Intermediate
30 min

Combine XB3-24Z8UM and ATmega324P to create an embedded cellular and mesh networking applications

Your connection to the world

XBee 2 Click with EasyAVR v7

Published Mar 01, 2023

Click board™

XBee 2 Click

Dev Board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega324P

Easy-to-add secure wireless connectivity

A

A

Hardware Overview

How does it work?

Xbee 2 Click is based on the XB3-24Z8UM, a Digi XBee® 3 Zigbee 3.0 transceiver module providing wireless end-point connectivity from Digi International. This module uses the IEEE 802.15.4 networking protocol for fast point-to-multipoint or peer-to-peer networking designed for high-throughput applications requiring low latency and predictable communication timing. Thanks to industry-leading technology, the pre-certified XB3-24Z8UM module allows switching between multiple frequencies and wireless protocols as needed (Zigbee, 802.15.4, DigiMesh®, and BLE), offering a fully interoperable ecosystem covering all vertical markets. This Click board™ comes with a configurable host interface allowing communication with MCU using the chosen interface. The XB3-24Z8UM can communicate with MCU using the UART interface with commonly used UART RX, TX, and hardware flow control pins UART CTS and RTS (Clear to Send and Ready to Send) or using the SPI interface

(XBee module will work as an SPI-slave only). In the case of the SPI interface, the users can use it to configure the module and write the library by themselves. The XB3-24Z8UM also has built-in Digi TrustFence® security, identity, and data privacy features, employing over 175 controls to protect against new and evolving cyber threats. The Xbee 2 Click is associated with many other features, such as the reset function and the possibility of visual and digital indicators. An active-low reset signal routed on the RST pin of the mikroBUS™ socket activates a hardware reset of the system, while a yellow LED indicator marked as ASSOC represents a visual indication of the module's connection to the network. If the LED is constantly on, it means that the module is not connected to the mobile network, while the standard flashing of the LED represents the normal operating mode. The A/D pin routed on the INT pin of the mikroBUS™ socket represents a type of interrupt positioning an onboard SMD jumper to an

appropriate whose function can be selected by position labeled as DTR or ATT. DTR position is a "Data terminal ready" function that tells the XBee module that the host MCU is ready to communicate. The ATT position (SPI Attention) represents an indicator for the SPI interface whenever the Xbee module has data for the host MCU. In addition, the board also has a commissioning pushbutton marked as COMMI, which, combined with an ASSOC LED, provides various simple functions to aid in deploying devices in a network. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

XBee 2 Click top side image
XBee 2 Click lateral side image
XBee 2 Click bottom side image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

ATmega324P

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

2048

Used MCU Pins

mikroBUS™ mapper

UART RTS
PA7
AN
Reset
PA6
RST
SPI Chip Select
PA5
CS
SPI Clock
PB7
SCK
SPI Data OUT
PB6
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
UART CTS
PD4
PWM
Data Ready Indicator
PD2
INT
UART TX
PD1
TX
UART RX
PD0
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

XBee 2 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
Buck 22 Click front image hardware assembly
MCU DIP 40 hardware assembly
EasyAVR v7 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output via UART Mode

1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.

2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.

3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.

4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART_Application_Output

Software Support

Library Description

This library contains API for XBee 2 Click driver.

Key functions:

  • xbee2_get_serial_number This function sends a get serial number command.

  • xbee2_set_device_name This function sets the device name (node identifier).

  • xbee2_set_destination_address This function sets the destination address high and low bytes.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief XBEE 2 Click Example.
 *
 * # Description
 * This example demonstrates the use of an XBEE 2 click board by showing
 * the communication between the two click boards configured in transparent mode.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and configures the click board by performing a factory reset, 
 * and setting the device name, destination address, api mode to transparent, 
 * and a device role to join or form network depending on the application mode.
 *
 * ## Application Task
 * Depending on the selected application mode, it reads all the received data or 
 * sends the desired message every 3 seconds.
 *
 * ## Additional Function
 * - static void xbee2_clear_app_buf ( void )
 * - static err_t xbee2_process ( void )
 * - static err_t xbee2_display_rsp ( uint16_t timeout )
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "xbee2.h"

// Device name (Node identifier).
#define DEVICE_NAME                 "XBEE 2 Click"

// Enter here the specific serial number high and low bytes of the remote device as a hex string or 
// leave it set to broadcast addresses for forwarding messages to all devices
#define DESTINATION_ADDRESS_HIGH    XBEE2_BROADCAST_DEST_ADDRESS_HIGH
#define DESTINATION_ADDRESS_LOW     XBEE2_BROADCAST_DEST_ADDRESS_LOW

// Comment out the line below in order to switch the application mode to receiver
#define DEMO_APP_TRANSMITTER

// Text message to send in the transmitter application mode
#define DEMO_TEXT_MESSAGE           "MikroE - XBEE 2 click board\r\n"

// Application process buffer size
#define PROCESS_BUFFER_SIZE         200

static xbee2_t xbee2;
static log_t logger;

static char app_buf[ PROCESS_BUFFER_SIZE ] = { 0 };
static int32_t app_buf_len = 0;
static int32_t app_buf_cnt = 0;

/**
 * @brief XBEE 2 clearing application buffer.
 * @details This function clears memory of application buffer and reset its length and counter.
 * @note None.
 */
static void xbee2_clear_app_buf ( void );

/**
 * @brief XBEE 2 data reading function.
 * @details This function reads data from device and concatenates data to application buffer.
 * @return @li @c  0 - Read some data.
 *         @li @c -1 - Nothing is read.
 *         @li @c -2 - Application buffer overflow.
 * See #err_t definition for detailed explanation.
 * @note None.
 */
static err_t xbee2_process ( void );

/**
 * @brief XBEE 2 display response function.
 * @details This function reads data from device until it sends OK or ERROR message or until
 * it exceeds the timeout value.
 * @param[in] timeout : Timeout value in miliseconds.
 * @return @li @c  0 - Read some data.
 *         @li @c -1 - Nothing is read.
 * See #err_t definition for detailed explanation.
 * @note None.
 */
static err_t xbee2_display_rsp ( uint16_t timeout );

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    xbee2_cfg_t xbee2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    xbee2_cfg_setup( &xbee2_cfg );
    XBEE2_MAP_MIKROBUS( xbee2_cfg, MIKROBUS_1 );
    if ( UART_ERROR == xbee2_init( &xbee2, &xbee2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    xbee2_hw_reset ( &xbee2 );
    xbee2_process( );
    xbee2_clear_app_buf( );
    
    log_printf( &logger, " - Enter command mode -\r\n" );
    xbee2_enter_command_mode ( &xbee2 );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Factory Reset -\r\n" );
    xbee2_factory_reset ( &xbee2 );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Get serial number -\r\n" );
    xbee2_get_serial_number ( &xbee2 );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Set Device Name -\r\n" );
    xbee2_set_device_name ( &xbee2, DEVICE_NAME );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Set Destination Address -\r\n" );
    xbee2_set_destination_address ( &xbee2, DESTINATION_ADDRESS_HIGH, DESTINATION_ADDRESS_LOW );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Set API mode -\r\n" );
    xbee2_set_api_mode ( &xbee2, XBEE2_MODE_TRANSPARENT );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Set Device Role -\r\n" );
#ifdef DEMO_APP_TRANSMITTER
    xbee2_set_device_role ( &xbee2, XBEE2_DEVICE_ROLE_JOIN_NETWORK );
#else
    xbee2_set_device_role ( &xbee2, XBEE2_DEVICE_ROLE_FORM_NETWORK );
#endif
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Apply changes -\r\n" );
    xbee2_apply_changes ( &xbee2 );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 ); 
    
    log_printf( &logger, " - Save changes -\r\n" );
    xbee2_save_changes ( &xbee2 );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 );
    
    log_printf( &logger, " - Exit command mode -\r\n" );
    xbee2_exit_command_mode ( &xbee2 );
    Delay_ms ( 100 );
    xbee2_display_rsp ( 1000 ); 
    
    app_buf_len = 0;
    app_buf_cnt = 0;
    
#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, " Application Mode: Transmitter\r\n" );
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
#ifdef DEMO_APP_TRANSMITTER
    xbee2_generic_write( &xbee2, DEMO_TEXT_MESSAGE, strlen( DEMO_TEXT_MESSAGE ) );
    log_printf( &logger, "%s", ( char * ) DEMO_TEXT_MESSAGE );
    Delay_ms( 3000 ); 
#else
    xbee2_process( );
    if ( app_buf_len > 0 ) 
    {
        log_printf( &logger, "%s", app_buf );
        xbee2_clear_app_buf(  );
    }
#endif
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

static void xbee2_clear_app_buf ( void ) 
{
    memset( app_buf, 0, app_buf_len );
    app_buf_len = 0;
    app_buf_cnt = 0;
}

static err_t xbee2_process ( void ) 
{
    int32_t rx_size;
    char rx_buf[ PROCESS_BUFFER_SIZE ] = { 0 };
    rx_size = xbee2_generic_read( &xbee2, rx_buf, PROCESS_BUFFER_SIZE );
    if ( rx_size > 0 ) 
    {
        int32_t buf_cnt = 0;
        if ( ( app_buf_len + rx_size ) > PROCESS_BUFFER_SIZE ) 
        {
            xbee2_clear_app_buf(  );
            return XBEE2_ERROR;
        } 
        else 
        {
            buf_cnt = app_buf_len;
            app_buf_len += rx_size;
        }
        for ( int32_t rx_cnt = 0; rx_cnt < rx_size; rx_cnt++ ) 
        {
            if ( rx_buf[ rx_cnt ] != 0 ) 
            {
                app_buf[ ( buf_cnt + rx_cnt ) ] = rx_buf[ rx_cnt ];
            }
            else
            {
                app_buf_len--;
                buf_cnt--;
            }
        }
        return XBEE2_OK;
    }
    return XBEE2_ERROR;
}

static err_t xbee2_display_rsp ( uint16_t timeout )
{
    uint16_t timeout_cnt = 0;
    xbee2_process ( );
    while ( ( 0 == strstr( app_buf, XBEE2_RSP_OK ) ) && 
            ( 0 == strstr( app_buf, XBEE2_RSP_ERROR ) ) && 
            ( timeout_cnt++ < timeout ) )
    {
        xbee2_process ( );
        Delay_ms ( 1 );
    }
    if ( app_buf_len > 0 )
    {
        for ( int32_t buf_cnt = 0; buf_cnt < app_buf_len; buf_cnt++ )
        {
            log_printf( &logger, "%c", app_buf[ buf_cnt ] );
        }
        xbee2_clear_app_buf ( );
        log_printf( &logger, "--------------------------------\r\n" );
        return XBEE2_OK;
    }
    return XBEE2_ERROR;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.