Intermediate
30 min

Achieve accurate data analysis without data loss with 48L256 and ATmega32

Uninterrupted brilliance

EERAM 3 Click with EasyAVR v7

Published Nov 01, 2023

Click board™

EERAM 3 Click

Dev. board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega32

Ensure higher protection against unauthorized access by incorporating serial EERAM to store encryption keys, secure boot information, and authentication credentials

A

A

Hardware Overview

How does it work?

EERAM 3 Click is based on the 48L256, an SPI nonvolatile EERAM memory IC designed to retain data when power is disrupted from Microchip. The user can treat this Click board™ as a full symmetrical read/write SRAM: it allows symmetrical reads and writes and has no limits on cell usage. It is structured as a 256-Kbit SRAM with EEPROM backup in each memory cell, where SRAM is organized as 32,768x8 bits. The 48L256 specifies 100.000 endurance cycles with data retention of a minimum of 10 years, which gives the 48L256 the unique capability to handle unlimited reads/writes to the memory. The backup EEPROM is invisible to the user and cannot be accessed by the user independently. The 48L256 includes circuitry that detects VCC voltage dropping below a certain threshold, shuts its connection to the outside environment, and

transfers all SRAM data to the EEPROM portion of each cell for safekeeping. When VCC returns, the circuitry automatically returns the data to the SRAM, and the user’s interaction with the SRAM can continue with the same data set. The 48L256 communicates with MCU through a standard SPI interface that enables very high clock speeds up to 66MHz, supporting the two most common SPI modes - SPI Mode 0 and 3, and a proper logic voltage level conversion performed by the appropriate voltage level translator. The VCC logic level provides a needed reference voltage for one side of the TXB0106, a 6-bit bidirectional level shifting, and a voltage translator with automatic direction sensing from Texas Instruments. On another side of the level shifter, the reference voltage is taken from the 3.3V mikroBUS™ power rail. Another feature of this Click board™

represents the configurable HOLD function labeled as HLD routed on the INT pin of the mikroBUS™ socket. The HLD pin suspends transmission to the 48L256 while in the middle of a serial sequence without re-transmitting the entire sequence. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HLD pin may be pulled low to pause further serial communication without resetting the serial sequence. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

EERAM 3 Click top side image
EERAM 3 Click bottom side image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

2048

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PA5
CS
SPI Clock
PB7
SCK
SPI Data OUT
PB6
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Data Transfer Pause
PD2
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

EERAM 3 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
GNSS2 Click front image hardware assembly
EasyAVR v7 Access DIP MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for EERAM 3 Click driver.

Key functions:

  • eeram3_memory_secure_write - This function securely writes a desired number of data bytes starting from the selected memory address

  • eeram3_memory_secure_read - This function securely reads a desired number of data bytes starting from the selected memory address

  • eeram3_set_block_protection - This function sets the block protection bits of the Status register.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief EERAM3 Click example
 *
 * # Description
 * This example demonstrates the use of EERAM 3 click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Writes a desired number of bytes to the memory and then verifies that it's written correctly
 * by reading from the same memory location and displaying the memory content on the USB UART.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "eeram3.h"

#define DEMO_TEXT_MESSAGE           "MikroE - EERAM 3 click board"
#define STARTING_ADDRESS            0x1000 

static eeram3_t eeram3;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;        /**< Logger config object. */
    eeram3_cfg_t eeram3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeram3_cfg_setup( &eeram3_cfg );
    EERAM3_MAP_MIKROBUS( eeram3_cfg, MIKROBUS_1 );
    
    if ( SPI_MASTER_ERROR == eeram3_init( &eeram3, &eeram3_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    eeram3_default_cfg ( &eeram3 );
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    uint8_t data_buf[ 64 ] = { 0 };
    if ( EERAM3_OK == eeram3_memory_secure_write ( &eeram3, STARTING_ADDRESS, 
                                                   DEMO_TEXT_MESSAGE, strlen ( DEMO_TEXT_MESSAGE ) ) )
    {
        log_printf ( &logger, "Data written to address 0x%.4X: %s\r\n", ( uint16_t ) STARTING_ADDRESS, 
                                                                          ( char * ) DEMO_TEXT_MESSAGE );
    }
    Delay_ms ( 100 );

    if ( EERAM3_OK == eeram3_memory_secure_read ( &eeram3, STARTING_ADDRESS, 
                                                  data_buf, strlen ( DEMO_TEXT_MESSAGE ) ) )
    {
        log_printf ( &logger, "Data read from address 0x%.4X: %s\r\n\n", ( uint16_t ) STARTING_ADDRESS, 
                                                                                      data_buf );
    }
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END
/*!
 * @file main.c
 * @brief EERAM3 Click example
 *
 * # Description
 * This example demonstrates the use of EERAM 3 click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Writes a desired number of bytes to the memory and then verifies that it's written correctly
 * by reading from the same memory location and displaying the memory content on the USB UART.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "eeram3.h"

#define DEMO_TEXT_MESSAGE           "MikroE - EERAM 3 click board"
#define STARTING_ADDRESS            0x1000 

static eeram3_t eeram3;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;        /**< Logger config object. */
    eeram3_cfg_t eeram3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeram3_cfg_setup( &eeram3_cfg );
    EERAM3_MAP_MIKROBUS( eeram3_cfg, MIKROBUS_1 );
    
    if ( SPI_MASTER_ERROR == eeram3_init( &eeram3, &eeram3_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }
    eeram3_default_cfg ( &eeram3 );
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    uint8_t data_buf[ 64 ] = { 0 };
    if ( EERAM3_OK == eeram3_memory_secure_write ( &eeram3, STARTING_ADDRESS, 
                                                   DEMO_TEXT_MESSAGE, strlen ( DEMO_TEXT_MESSAGE ) ) )
    {
        log_printf ( &logger, "Data written to address 0x%.4X: %s\r\n", ( uint16_t ) STARTING_ADDRESS, 
                                                                          ( char * ) DEMO_TEXT_MESSAGE );
    }
    Delay_ms ( 100 );

    if ( EERAM3_OK == eeram3_memory_secure_read ( &eeram3, STARTING_ADDRESS, 
                                                  data_buf, strlen ( DEMO_TEXT_MESSAGE ) ) )
    {
        log_printf ( &logger, "Data read from address 0x%.4X: %s\r\n\n", ( uint16_t ) STARTING_ADDRESS, 
                                                                                      data_buf );
    }
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.