Beginner
10 min

Take control of your data like never before using FT232 and STM32F407VGT6

Plug, play, and communicate with ease

USB UART Click with Clicker 2 for STM32

Published Nov 02, 2023

Click board™

USB UART Click

Dev Board

Clicker 2 for STM32

Compiler

NECTO Studio

MCU

STM32F407VGT6

With our user-friendly USB to UART solution, connecting and communicating with your devices has never been simpler - just plug it in, play with the data, and enjoy seamless communication

A

A

Hardware Overview

How does it work?

USB UART Click is based on the FT232RL, a USB to serial UART bridge from FTDI Chip. The entire USB protocol is handled on the IC; thus, no USB-specific firmware programming is required. FTDI provides royalty-free Virtual Com Port (VCP) and Direct (D2XX) drivers for all the major OSes used on personal computers. FT232RL also contains an integrated 1024-bit internal EEPROM for storing USB VID, PID, serial number, product description strings, and CBUS I/O configuration. After installing the OS drivers, the device is ready to be used. Plugging into the PC over the mini-USB connector will create a virtual COM port. The Baud Rate Generator provides a 16x clock input to the UART Controller from the 48MHz reference clock. This determines the baud rate of the UART, which is programmable from 183 baud to 3 Mbaud.

Also, non-standard baud rates are supported. The FTDI driver automatically calculates the baud rate, so it is enough to forward the desired baud rate to the driver, usually done by selecting the baud rate via the GUI interface of the PC terminal application. USB UART Click uses a standard 2-Wire UART interface to communicate with the host MCU, with commonly used UART RX and TX pins. In addition, you can use the UART flow control pins RTS and CTS. LEDs RX and TX are here for visual presentation of data flow. This device also features configurable CBUS pins, which can be used for several useful functions, such as configurable clock out for driving the microcontroller, data LED drive, USB Sleep, PWR status, and more. By default, CBUS3 and CBUS4 pins are configured as Power Enable (PWR) and Sleep options (SLP). CBUS3

output pin will be set to a LOW logic state during the USB suspend mode. It can power down external circuitry or be used for similar purposes. CBUS4 output pin will be set to a LOW logic state after the USB has configured the device, then HIGH during the USB suspend mode. This can also be used for powering down/power saving by turning unneeded external circuitry. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the I/O LEVEL SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

USB UART Click hardware overview image

Features overview

Development board

Clicker 2 for STM32 is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit ARM Cortex-M4 microcontroller, the STM32F407VGT6 from STMicroelectronics, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a JTAG programmer connector, and two 26-pin headers for interfacing with external electronics. Its compact design with clear and easily recognizable silkscreen markings allows you to build gadgets with unique functionalities and features quickly. Each part of the Clicker 2 for

STM32 development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the Clicker 2 for STM32 programming method, using a USB HID mikroBootloader, an external mikroProg connector for STM32 programmer, or through an external ST-LINK V2 programmer, the Clicker 2 board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Mini-B cable, where onboard voltage regulators provide the appropriate voltage levels to each component on the board or using a Li-Polymer battery via an onboard battery

connector. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several user-configurable buttons and LED indicators. Clicker 2 for STM32 is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Clicker 2 for STM32 dimensions image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

10

Silicon Vendor

STMicroelectronics

Pin count

100

RAM (Bytes)

100

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
UART CTS
PE7
RST
Sleep Mode / CBUS4
PE8
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Power Enable / CBUS3
PE9
PWM
UART RTS
PE10
INT
UART TX
PD5
TX
UART RX
PD6
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

USB UART Click Schematic schematic

Step by step

Project assembly

Clicker 2 for PIC18FJ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Clicker 2 for STM32 as your development board.

Clicker 2 for PIC18FJ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Mini B Connector Clicker 2 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for USB UART Click driver.

Key functions:

  • usbuart_pwr_ctrl - This function sets the click turns click on.

  • usbuart_set_cts - This function sets CTS pin.

  • usbuart_send_command - This function is used for sending commands.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief USB UART Click Example.
 *
 *# Description
 * This example reads and processes data from USB UART clicks.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes driver and power module.
 * 
 * ## Application Task  
 * Reads data and echos it back to device and logs it to board.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "usbuart.h"
#include "string.h"

#define PROCESS_BUFFER_SIZE 100

static usbuart_t usbuart;
static log_t logger;

static char app_buf[ PROCESS_BUFFER_SIZE ] = { 0 };
static int32_t app_buf_len = 0;

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    usbuart_cfg_t usbuart_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );
    Delay_ms( 100 );

    // Click initialization.

    usbuart_cfg_setup( &usbuart_cfg );
    USBUART_MAP_MIKROBUS( usbuart_cfg, MIKROBUS_1 );
    
    err_t init_flag  = usbuart_init( &usbuart, &usbuart_cfg );
    if ( UART_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    app_buf_len = 0;
    
    usbuart_pwr_ctrl( &usbuart, USBUART_POWER_ON );
    usbuart_set_cts( &usbuart, USBUART_CTS_NO_ACTIVE );
    usbuart_set_mode( &usbuart, USBUART_MODE_NORMAL );
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) {
    app_buf_len = usbuart_generic_read( &usbuart, app_buf, PROCESS_BUFFER_SIZE );
    
    if ( app_buf_len > 0 ) {
        log_printf( &logger, "%s", app_buf );
        memset( app_buf, 0, PROCESS_BUFFER_SIZE );
    }
}

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.