Beginner
10 min

Enhance the lighting capabilities in your projects with KTD2691 and PIC32MZ2048EFM100

Generate either a flash or a continuous torch light

LED Flash 3 Click with Curiosity PIC32 MZ EF

Published Feb 13, 2024

Click board™

LED Flash 3 Click

Dev Board

Curiosity PIC32 MZ EF

Compiler

NECTO Studio

MCU

PIC32MZ2048EFM100

Deliver quick bursts of intense light for photography needs or maintain a steady and constant illumination for navigation purposes

A

A

Hardware Overview

How does it work?

LED Flash 3 Click is based on the KTD2691, an inductorless single-flash LED driver from Kinetic Technologies. While working in flash mode, you can program the LED current over the software, but you can also use a hardware strobe pin to control this mode. The software can only program the torch mode and on/off ramp. There are various additional functionalities that this LED driver provides. This includes low voltage protection (LVP), a flash time-out function that sets the maximum time of one flash event, under voltage lock-out (UVLO), thermal shutdown, LED short protection, LED open protection, and more. The LED Flash 3 Click is

equipped with the XPCWHT-L1-R250-00A01, an Xlamp XP-C LED. The LED combines proven lighting-class performance and reliability. It features a white LED with a wide viewing angle and low thermal resistance. In addition, you can add an external similar LED over the available connector. The LED selection can be made over the LED SEL jumper. You can also select the LED driver voltage supply between the 3.3V and 5V over the VCC SEL jumper. LED Flash 3 Click uses a standard 2-wire I2C interface to communicate with the host MCU supporting standard and a fast mode with up to 400kHz clock frequency. The hardware strobe pin is

available over the STB pin. If using the STROBE pin to control the flash mode, there is an option to select when the flash mode is deactivated. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VIO SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

LED Flash 3 Click hardware overview image

Features overview

Development board

Curiosity PIC32 MZ EF development board is a fully integrated 32-bit development platform featuring the high-performance PIC32MZ EF Series (PIC32MZ2048EFM) that has a 2MB Flash, 512KB RAM, integrated FPU, Crypto accelerator, and excellent connectivity options. It includes an integrated programmer and debugger, requiring no additional hardware. Users can expand

functionality through MIKROE mikroBUS™ Click™ adapter boards, add Ethernet connectivity with the Microchip PHY daughter board, add WiFi connectivity capability using the Microchip expansions boards, and add audio input and output capability with Microchip audio daughter boards. These boards are fully integrated into PIC32’s powerful software framework, MPLAB Harmony,

which provides a flexible and modular interface to application development a rich set of inter-operable software stacks (TCP-IP, USB), and easy-to-use features. The Curiosity PIC32 MZ EF development board offers expansion capabilities making it an excellent choice for a rapid prototyping board in Connectivity, IOT, and general-purpose applications.

Curiosity PIC32MZ EF double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
ID COMM
RPD4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Hardware Flash Enable
RPE8
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RPA14
SCL
I2C Data
RPA15
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

LED Flash 3 Click Schematic schematic

Step by step

Project assembly

Curiosity PIC32MZ EF front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity PIC32 MZ EF as your development board.

Curiosity PIC32MZ EF front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
Curiosity PIC32 MZ EF MB 1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Curiosity PIC32 MZ EF MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for LED Flash 3 Click driver.

Key functions:

  • ledflash3_write_reg - LED Flash 3 register writing function

  • ledflash3_set_flash_current - LED Flash 3 set flash current function

  • ledflash3_set_torch_current - LED Flash 3 set torch current function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief LED Flash 3 Click example
 *
 * # Description
 * This app demonstrate flash mode on LED Flash 3 Click.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Turning the LED on for a second and off for another second.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "ledflash3.h"

static ledflash3_t ledflash3;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ledflash3_cfg_t ledflash3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ledflash3_cfg_setup( &ledflash3_cfg );
    LEDFLASH3_MAP_MIKROBUS( ledflash3_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == ledflash3_init( &ledflash3, &ledflash3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( LEDFLASH3_ERROR == ledflash3_default_cfg ( &ledflash3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task ");
}

void application_task ( void ) 
{
    ledflash3_strobe_pin( &ledflash3 );
    Delay_ms( 2000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.