Intermediate
30 min

Transform your message with captivating numbers and letters using 160100-71 and PIC18F26K20

RGB 7-segment display: Where numbers come to life

7-SEG RGB Click with EasyPIC v8

Published Nov 01, 2023

Click board™

7-SEG RGB Click

Dev Board

EasyPIC v8

Compiler

NECTO Studio

MCU

PIC18F26K20

Our full-color RGB 7-segment digit display is engineered to provide a vibrant and dynamic visual experience, enabling you to express your creativity and showcase information with dazzling, customizable colors

A

A

Hardware Overview

How does it work?

7-SEG RGB Click is based on the 160100-71, a full-color single 7-segment digit display from Elektor. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over the CS, and PWM pin on the mikroBUS™ line. The click can be connected in a chain, in order to display a larger number of characters. Unlike with conventional 7

segment displays, you will be able to use multiple colors on the display. Each segment has R, G, B LEDs that can be adjusted in 255 steps and therefore 16,581,375 color combinations are available for each segment of the digit on the display. Also, the ability to control the brightness of all the LED's is driven at 255 steps. It should be noted that the brightness values above 80 should

rarely be used. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the LOGIC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

7-SEG RGB Click top side image
7-SEG RGB Click bottom side image

Features overview

Development board

EasyPIC v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports many high pin count 8-bit PIC microcontrollers from Microchip, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, EasyPIC v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the EasyPIC v8 development board contains the components necessary for the most efficient operation of the same board. In addition to the advanced integrated CODEGRIP programmer/debugger module, which offers many valuable programming/debugging options and seamless integration with the Mikroe software environment, the board also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB DEVICE, and CAN are also included, including the well-established mikroBUS™ standard, two display options (graphical and character-based LCD), and several different DIP sockets. These sockets cover a wide range of 8-bit PIC MCUs, from the smallest PIC MCU devices with only eight up to forty pins. EasyPIC v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyPIC v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

64

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

3936

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
Write Enable
RA5
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Data Input
RC1
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power supply
5V
5V
Ground
GND
GND
2

Take a closer look

Click board™ Schematic

7-SEG RGB Click Schematic schematic

Step by step

Project assembly

EasyPIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyPIC v8 as your development board.

EasyPIC v8 front image hardware assembly
Rotary B 2 Click front image hardware assembly
MCU DIP 28 hardware assembly
EasyPIC v8 28pin-DIP - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output via UART Mode

1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.

2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.

3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.

4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART_Application_Output

Software Support

Library Description

This library contains API for 7-SEG RGB Click driver.

Key functions:

  • c7segrgb_set_num - The function sets character and its color

  • c7segrgb_set_seven_seg - The function sets the state and color of every segment from click board object segment array data

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief 7-SEG RGB Click example
 * 
 * # Description
 * This click shows all ten digits on a full-color single 7 segment digit display. 
 * Each segment has R, G, B LEDs that can be adjusted in 255 steps and 
 * the ability to control the brightness of all the LED.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization driver enables - GPIO.
 * 
 * ## Application Task  
 * This is an example which demonstrates the use of 7-SEG RGB Click board.
 * This simple example shows all ten digits in different colors on 7-SEG RGB click.
 * 
 * @note 
 * Make sure the logic delays are defined for your system in the c7segrgb_delays.h file.
 *
 * <pre>
 * Additional Functions :
 * void logic_one ( )  - Generic logic one function.
 * void logic_zero ( ) - Generic logic zero function.
 * </pre>
 * 
 * - segments layout
 *       _0_
 *     5|   |1
 *      |_6_|
 *     4|   |2
 *      |_3_|.7
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "c7segrgb.h"
#include "c7segrgb_delays.h"

// ------------------------------------------------------------------ VARIABLES

static c7segrgb_t c7segrgb;

static uint8_t CHARACTER_TABLE[ 10 ] = 
{
    0x3F, // '0'
    0x06, // '1'    _a_
    0x5B, // '2'  f|   |b
    0x4F, // '3'   |_g_|
    0x66, // '4'  e|   |c
    0x6D, // '5'   |_d_|.dp
    0x7D, // '6'
    0x07, // '7'
    0x7F, // '8'
    0x6F  // '9'
};
                                       
static c7segrgb_segment_t segments_data[ 8 ] = 
{
    { true, 40, 0, 0 },
    { true, 0, 40, 0 },
    { true, 0, 0, 40 },
    { true, 10, 40, 40 },
    { true, 40, 10, 40 },
    { true, 40, 40, 10 },
    { true, 10, 20, 30 },
    { true, 30, 20, 10 }
};

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void logic_one ( void )
{
    hal_ll_gpio_set_pin_output( &c7segrgb.pwm.pin );
    DELAY_T1H;
    hal_ll_gpio_clear_pin_output( &c7segrgb.pwm.pin );
    DELAY_T1L;
}

void logic_zero ( void )
{
    hal_ll_gpio_set_pin_output( &c7segrgb.pwm.pin );
    DELAY_TOH;
    hal_ll_gpio_clear_pin_output( &c7segrgb.pwm.pin );
    DELAY_TOL;
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    c7segrgb_cfg_t cfg;

    //  Click initialization.
    c7segrgb_cfg_setup( &cfg );
    cfg.logic_one = &logic_one;
    cfg.logic_zero = &logic_zero;
    C7SEGRGB_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c7segrgb_init( &c7segrgb, &cfg );
    
    for ( uint8_t cnt = 0; cnt < 8; cnt++ )
    {
        c7segrgb.segments[ cnt ] = segments_data[ cnt ];
    }
    c7segrgb_set_seven_seg( &c7segrgb );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

void application_task ( void )
{
    for ( uint8_t cnt_i = 0; cnt_i < 10; cnt_i++ )
    {
        for ( uint8_t cnt_j = 10; cnt_j > 0; cnt_j-- )
        {
            c7segrgb_set_num( &c7segrgb, CHARACTER_TABLE[ cnt_i ], 4 * cnt_i, 4 * cnt_j, cnt_i * cnt_j );
            Delay_ms ( 100 );
        }
    }
    
    c7segrgb_set_num( &c7segrgb, C7SEGRGB_POINT, 10, 10, 10 );
    Delay_ms ( 1000 );
    
    c7segrgb_set_num( &c7segrgb, C7SEGRGB_ZERO, 40, 40, 40 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_ONE, 40, 0, 0 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_TWO, 0, 40, 0 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_THREE, 0, 0, 40 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_FOUR, 40, 0, 40 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_FIVE, 0, 40, 40 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_SIX, 40, 40, 0 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_SEVEN, 20, 30, 40 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_EIGHT, 40, 15, 31 );
    Delay_ms ( 1000 );

    c7segrgb_set_num( &c7segrgb, C7SEGRGB_NINE, 20, 10, 30 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.