Intermediate
30 min

Confidently separate and protect your I2C devices using ADUM2250 and PIC18F57Q43

Protect and connect: Your trusted I2C isolation solution!

I2C Isolator 6 Click with Curiosity Nano with PIC18F57Q43

Published Feb 13, 2024

Click board™

I2C Isolator 6 Click

Dev.Board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Ensure the integrity of your I2C communication by isolating and safeguarding your signals from external influences

A

A

Hardware Overview

How does it work?

I2C Isolator 6 Click is based on the ADUM2250, a two-channel, 5kVRMS I2C digital isolator from Analog Devices, suitable for hot-swap applications. The ADUM2250 bidirectionally buffers the two I2C signals across the isolation barrier while providing 5kVRMS of galvanic isolation. It transfers digital signals with data rates up to 1MHz between circuits with different power domains at ambient temperatures. It offers glitch-free operation,

excellent reliability, and a long operational life. The wide temperature range and high isolation voltage make the device ideal for harsh industrial environments. This Click board™ also possesses two terminals labeled as VIN and SDA/SCL at the top of the Click board™, where VIN represents the isolated-side power supply of the isolator, while the other corresponds to the isolated bidirectional logic-bus terminal. This Click board™ can

operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

I2C Isolator 6 Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB1
SCL
I2C Data
PB2
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

I2C Isolator 6 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PICXXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for I2C Isolator 6 Click driver.

Key functions:

  • i2cisolator6_write - I2C Isolator 6 I2C writing function

  • i2cisolator6_read - I2C Isolator 6 I2C reading function

  • i2cisolator6_write_then_read - I2C Isolator 6 I2C write then read function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief I2C Isolator 6 Click example
 *
 * # Description
 * This library contains API for the I2C Isolator 6 Click driver.
 * This demo application shows an example of an I2C Isolator 6 Click 
 * wired to the Accel 21 Click for reading device ID.
 * The library also includes an I2C writing and reading functions.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * The initialization of the I2C module, log UART.
 * After the driver init, the app sets Accel 21 Click I2C Slave address.
 *
 * ## Application Task
 * This example demonstrates the use of the I2C Isolator 6 Click board™.
 * Logs device ID values of the Accel 21 Click 
 * wired to the I2C Isolator 6 Click board™.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "i2cisolator6.h"

#define ACCEL21_DEVICE_ADDRESS_GND    0x18
#define ACCEL21_DEVICE_ADDRESS_VCC    0x19
#define ACCEL21_REG_WHO_AM_I          0x0F
#define ACCEL21_DEVICE_ID             0x33

static i2cisolator6_t i2cisolator6;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    i2cisolator6_cfg_t i2cisolator6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    i2cisolator6_cfg_setup( &i2cisolator6_cfg );
    I2CISOLATOR6_MAP_MIKROBUS( i2cisolator6_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == i2cisolator6_init( &i2cisolator6, &i2cisolator6_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms( 100 );
    
    if ( I2CISOLATOR6_ERROR == i2cisolator6_set_slave_address( &i2cisolator6, ACCEL21_DEVICE_ADDRESS_GND ) )
    {
        log_error( &logger, " Set I2C Slave address ERROR." );
        for ( ; ; );
    }
    Delay_ms( 100 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------\r\n" );
}

void application_task ( void ) 
{
    static uint8_t device_id = 0;
    static uint8_t reg = ACCEL21_REG_WHO_AM_I;
    if ( I2CISOLATOR6_OK == i2cisolator6_write_then_read( &i2cisolator6, &reg, 1, &device_id, 1 ) )
    {
        if ( ACCEL21_DEVICE_ID == device_id )
        {
            log_printf( &logger, " Device ID: 0x%.2X\r\n", ( uint16_t ) device_id );
            log_printf( &logger, "---------------------\r\n" );
        }
    }
    Delay_ms( 1000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources