Intermediate
30 min

Enhance automation with TB67S209 and STM32F446RE and revolutionizes motion control

Stepper driver for limitless possibilities

Multi Stepper Click - TB67S209 with Nucleo 64 with STM32F446RE MCU

Published Oct 08, 2024

Click board™

Multi Stepper Click - TB67S209

Dev Board

Nucleo 64 with STM32F446RE MCU

Compiler

NECTO Studio

MCU

STM32F446RE

Experience seamless motor control, precision, and unmatched reliability with the TB67S209 stepper driver, empowering your embedded solution to reach new heights

A

A

Hardware Overview

How does it work?

Multi Stepper Click is based on the TB67S209FTG, a two-phase bipolar stepping motor driver using a PWM chopper from Toshiba Semiconductor. The TB67S209FTG has a built-in clock-in decoder (CLOCK-in controlled), which means that each up-edge of the CLK signal is routed to the PWM pin of the mikroBUS™ socket, will shift the motor’s electrical angle per step. It also incorporates a low on-resistance MOSFET output stage, which can deliver a 2.8A current with a motor output voltage rating of 47V, and integrated protection mechanisms such as over-current, over-temperature, and under-voltage detection. In addition, it allows from full-step up to 1/32 steps resolution, with the help of which motor noise can be significantly reduced with smoother operation and more precise control. The TB67S209FTG supports a selectable Mixed Decay mode. Though the Mixed Decay is determined by controlling two different types of decay (Fast Decay and Slow Decay), this function enables the user to select the ratio of the Mixed Decay through the PCA9555A pins P4/P5. To allow both pins to be configurated by the expander, the SMD jumper labeled JP4 must be positioned to an appropriate position marked as P4. Also, the motor current output value can be manually set using an onboard trimmer labeled VR1, which sets the reference voltage from 0V to 3.3V.

As mentioned, the TB67S209FTG supports various step resolution configurations through its control signals. These control signals are provided through the PCA9555A port expander, which establishes communication with the MCU via the I2C serial interface. This Click board™ also allows a connection of external step-resolution control signals on the onboard header J1 on pins labeled as P1 and P2 for the device’s DMODE1 and DMODE2 control. The PCA9555A also allows choosing the least significant bit (LSB) of its I2C slave address by positioning SMD jumpers labeled ADDR SEL to an appropriate position marked as 0 and 1. Also, this Click board™ has a Standby function, activated when all three step-resolution control signals are in their low logic state, used to switch to Standby mode by setting all motor control pins to a low logic state. When the Standby mode is active, the TB67S209FTG stops supplying the power to the internal oscillating circuit and motor output part (the motor drive cannot be performed). In addition to the I2C communication, several GPIO pins connected to the mikroBUS™ socket are also used. The Enable pin, labeled as EN and routed to the CS pin of the mikroBUS™ socket, optimizes power consumption used for power ON/OFF purposes. Also, a simple rotation direction function routed to the AN pin on the

mikroBUS™ socket allows MCU to manage the direction of the stepper motor (clockwise or counterclockwise), while the RST pin of the mikroBUS™ socket initializes an electrical angle in the internal counter to set an initial position. Regarding angle monitoring, this Click board™ has a dual way of monitoring selected by positioning the SMD jumper labeled as JP5 to an appropriate position marked as P6 or INT, which chooses to monitor via the expander or INT pin of the mikroBUS™ socket. In that case, this anomaly is indicated by a red LED marked as DIAG and via P7 pin over the I2C INT to the mikroBUS™ INT pin proceeding JP5 is set to P6. Multi Stepper Click supports an external power supply for the TB67S209FTG, which can be connected to the input terminal labeled as VM and should be within the range of 10V to 47V, while the stepper motor coils can be connected to the terminals labeled as B+, B-, A-, and A+. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

multi-stepper-click-tb67s209-hardware-overview

Features overview

Development board

Nucleo-64 with STM32F446RE MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F446RE MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

512

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

131072

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

The 28BYJ-48 is an adaptable 5VDC stepper motor with a compact design, ideal for various applications. It features four phases, a speed variation ratio of 1/64, and a stride angle of 5.625°/64 steps, allowing precise control. The motor operates at a frequency of 100Hz and has a DC resistance of 50Ω ±7% at 25°C. It boasts an idle in-traction frequency greater than 600Hz and an idle out-traction frequency exceeding 1000Hz, ensuring reliability in different scenarios. With a self-positioning torque and in-traction torque both exceeding 34.3mN.m at 120Hz, the 28BYJ-48 offers robust performance. Its friction torque ranges from 600 to 1200 gf.cm, while the pull-in torque is 300 gf.cm. This motor makes a reliable and efficient choice for your stepper motor needs.

Multi Stepper Click - TB67S209 accessories image

Used MCU Pins

mikroBUS™ mapper

Rotation Direction
PC0
AN
Reset
PC12
RST
Enable
PB12
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Clock Signal
PC8
PWM
Interrupt
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Multi Stepper Click - TB67S209 Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32F446RE MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Nucleo-64 with STM32XXX MCU Access MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Multi Stepper TB67S209 Click driver.

Key functions:

  • multisteppertb67s209_set_step_mode This function sets the step mode resolution settings.

  • multisteppertb67s209_drive_motor This function drives the motor for the specific number of steps at the selected speed.

  • multisteppertb67s209_set_direction This function sets the motor direction by setting the AN pin logic state.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief MultiStepperTB67S209 Click example
 *
 * # Description
 * This example demonstrates the use of the Multi Stepper TB67S209 click board by driving the 
 * motor in both directions for a desired number of steps.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Drives the motor clockwise for 200 steps and then counter-clockiwse for 100 steps with
 * 2 seconds delay before changing the direction.
 * Each step will be logged on the USB UART where you can track the program flow.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "multisteppertb67s209.h"

static multisteppertb67s209_t multisteppertb67s209;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    multisteppertb67s209_cfg_t multisteppertb67s209_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    multisteppertb67s209_cfg_setup( &multisteppertb67s209_cfg );
    MULTISTEPPERTB67S209_MAP_MIKROBUS( multisteppertb67s209_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == multisteppertb67s209_init( &multisteppertb67s209, &multisteppertb67s209_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( MULTISTEPPERTB67S209_ERROR == multisteppertb67s209_default_cfg ( &multisteppertb67s209 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    log_printf ( &logger, " Move 200 steps clockwise \r\n\n" );
    multisteppertb67s209_set_direction ( &multisteppertb67s209, MULTISTEPPERTB67S209_DIR_CW );
    multisteppertb67s209_drive_motor ( &multisteppertb67s209, 200, MULTISTEPPERTB67S209_SPEED_FAST );
    Delay_ms ( 2000 );
    
    log_printf ( &logger, " Move 100 steps counter-clockwise \r\n\n" );
    multisteppertb67s209_set_direction ( &multisteppertb67s209, MULTISTEPPERTB67S209_DIR_CCW );
    multisteppertb67s209_drive_motor ( &multisteppertb67s209, 100, MULTISTEPPERTB67S209_SPEED_FAST );
    Delay_ms ( 2000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.