Intermediate
30 min
0

Achieve reliable stepper motor control with TB67S261 and STM32L4A6RG

Put some pep in your machine's step

Multi Stepper Click - TB67S261 with UNI-DS v8

Published Apr 23, 2023

Click board™

Multi Stepper Click - TB67S261

Development board

UNI-DS v8

Compiler

NECTO Studio

MCU

STM32L4A6RG

Upgrade your motion control system with our powerful and most efficient stepper motor driver

A

A

Hardware Overview

How does it work?

Multi Stepper Click is based on the TB67S261FTG, a two-phase bipolar stepping motor driver using a PWM chopper (customized by external resistance R2 and capacitor C1) from Toshiba Semiconductor. The TB67S261FTG incorporates a low on-resistance MOSFET output stage, which can deliver a 1.4A current with a motor output voltage rating of 47V, in addition to integrated protection mechanisms such as over-current and over-temperature detection. In addition, it supports full-, half-, and quarter-step resolution, with the help of which motor noise can be significantly reduced with smoother operation and more precise control. As mentioned in the product description, this stepping motor driver is PHASE-in controlled. These control signals are provided through the PCA9555A port expander, which establishes communication with the MCU via the I2C serial interface. This Click board™ also allows a connection of external control signals on the onboard header J1 on pins labeled as P1 and P2 for the device's PHASE-in control. The PCA9555A also allows choosing the least significant bit (LSB) of its I2C slave address by positioning SMD jumpers labeled

ADDR SEL to an appropriate position marked as 0 and 1. In addition to PHASE signals, four A/B channel logic signals, INA1, INB1, INB2, and INA2, are used to control the motor, adjusting the desired step resolution. AN, CLK, and EN pins of the mikroBUS™ socket control the first three signals. The INA2 signal allows dual control selected by positioning the SMD jumper labeled JP5 to an appropriate position marked as P6 or INT, which chooses control via the expander or INT pin of the mikroBUS™ socket. In the case of the selected INT position of the JP5 jumper, the JP10 jumper needs to be unpopulated. Also, this Click board™ has a Standby function routed to the RST pin of the mikroBUS™ socket used to switch to Standby mode by setting all motor control pins to a low logic state. When the Standby mode is active, the TB67S261FTG stops supplying the power to the internal oscillating circuit and motor output part (the motor drive cannot be performed). This Click board™ also has an additional LED for anomaly indication, but since this version of the stepper driver does not support this feature, this indicator cannot be used.

The motor A/B channel current output value can be set manually using an onboard trimmer labeled VR1, which sets the reference voltage from 0V to 3.3V. The default configuration of the JP4 jumper is the VREF position that sets both channels' output current via the VR1 trimmer. In this case, avoid position P4 on a jumper JP4 since the VREFA pin requires an analog signal for setting. Multi Stepper Click supports an external power supply for the TB67S261FTG, which can be connected to the input terminal labeled as VM and should be within the range of 10V to 47V, while the stepper motor coils can be connected to the terminals labeled as B+, B-, A-, and A+. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

multi-stepper-click-tb67s261-hardware-overview

Features overview

Development board

UNI-DS v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different STM32, Kinetis, TIVA, CEC, MSP, PIC, dsPIC, PIC32, and AVR MCUs regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, UNI-DS v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the UNI-DS v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector. Communication options such as USB-UART, USB

HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. UNI-DS v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI-DS v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

327680

You complete me!

Accessories

The 28BYJ-48 is an adaptable 5VDC stepper motor with a compact design, ideal for various applications. It features four phases, a speed variation ratio of 1/64, and a stride angle of 5.625°/64 steps, allowing precise control. The motor operates at a frequency of 100Hz and has a DC resistance of 50Ω ±7% at 25°C. It boasts an idle in-traction frequency greater than 600Hz and an idle out-traction frequency exceeding 1000Hz, ensuring reliability in different scenarios. With a self-positioning torque and in-traction torque both exceeding 34.3mN.m at 120Hz, the 28BYJ-48 offers robust performance. Its friction torque ranges from 600 to 1200 gf.cm, while the pull-in torque is 300 gf.cm. This motor makes a reliable and efficient choice for your stepper motor needs.

Multi Stepper Click - TB67S261 accessories image

Used MCU Pins

mikroBUS™ mapper

A-Channel Control 1
PA0
AN
Standby Control
PB0
RST
B-Channel Control 2
PB9
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
B-Channel Control 1
PB10
PWM
Interrupt / A-Channel Control 2
PB3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB6
SCL
I2C Data
PB7
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Multi Stepper Click - TB67S261 Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI-DS v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for Multi Stepper TB67S261 Click driver.

Key functions:

  • multisteppertb67s261_set_step_mode This function sets the step mode resolution settings in ctx->step_mode.

  • multisteppertb67s261_drive_motor This function drives the motor for the specific number of steps at the selected speed.

  • multisteppertb67s261_set_direction This function sets the motor direction to clockwise or counter-clockwise in ctx->direction.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief MultiStepperTB67S261 Click example
 *
 * # Description
 * This example demonstrates the use of the Multi Stepper TB67S261 click board by driving the 
 * motor in both directions for a desired number of steps.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Drives the motor clockwise for 200 steps and then counter-clockiwse for 100 steps with
 * 2 seconds delay before changing the direction.
 * Each step will be logged on the USB UART where you can track the program flow.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "multisteppertb67s261.h"

static multisteppertb67s261_t multisteppertb67s261;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    multisteppertb67s261_cfg_t multisteppertb67s261_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    multisteppertb67s261_cfg_setup( &multisteppertb67s261_cfg );
    MULTISTEPPERTB67S261_MAP_MIKROBUS( multisteppertb67s261_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == multisteppertb67s261_init( &multisteppertb67s261, &multisteppertb67s261_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( MULTISTEPPERTB67S261_ERROR == multisteppertb67s261_default_cfg ( &multisteppertb67s261 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    multisteppertb67s261_set_direction ( &multisteppertb67s261, MULTISTEPPERTB67S261_DIR_CW );
    if ( MULTISTEPPERTB67S261_OK == multisteppertb67s261_drive_motor ( &multisteppertb67s261, 200, 
                                                                     MULTISTEPPERTB67S261_SPEED_FAST ) )
    {
        log_printf ( &logger, " Move 200 steps clockwise \r\n\n" );
        Delay_ms ( 2000 );
    }
    
    multisteppertb67s261_set_direction ( &multisteppertb67s261, MULTISTEPPERTB67S261_DIR_CCW );
    if ( MULTISTEPPERTB67S261_OK == multisteppertb67s261_drive_motor ( &multisteppertb67s261, 100,
                                                                     MULTISTEPPERTB67S261_SPEED_FAST ) )
    {
        log_printf ( &logger, " Move 100 steps counter-clockwise \r\n\n" );
        Delay_ms ( 2000 );
    }
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources