Intermediate
30 min

Shape your signals with AD9834 and TM4C129ENCPDT

Frequency stimulus/waveform generation

Waveform 2 Click with Fusion for Tiva v8

Published May 27, 2023

Click board™

Waveform 2 Click

Dev. board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

TM4C129ENCPDT

Achieve sine and triangular outputs alongside frequency phase tuning and modulation with an advanced waveform generator

A

A

Hardware Overview

How does it work?

Waveform 2 Click is based on the AD9834, a 75 MHz low-power DDS device capable of producing high-performance sine/triangle/square outputs from Analog Devices. The AD9834 can have a broad range of simple and complex modulation schemes. These modulation schemes are fully implemented in the digital domain, allowing the accurate realization of complex modulation algorithms using DSP techniques. It contains a 16-bit control register accessible through the SPI serial interface that sets up the AD9834 as the user wants to operate it. The internal circuitry of the AD9834 consists of a numerically controlled oscillator (NCO), frequency and phase modulators, SIN ROM, a DAC, a comparator, and a regulator. The outputs of the AD9834 are filtered by an RC network and then amplified via THS4551, a differential amplifier that offers an easy interface from single-ended sources to the differential output required by high-precision

analog-to-digital converters from Texas Instruments.The output signal from the AD9834 follows two paths. One path is routed to an output connector labeled as Signal Out when the output waveform of the generator is sinusoidal or triangular, while the other path, routed to an output connector labeled as Square Out, is used when the output waveform of the generator is square. In addition to the positive supply voltage requirement, the THS4551 amplifier also has a negative supply voltage, achieved by the ADM8829, a charge-pump voltage inverter used to generate a negative supply from a positive input from Analog Devices. This Click board™ also has an external oscillator of 75MHz, enabled by the EN pin of the mikroBUS™ socket, and represents the maximum frequency that the AD9834 can accept. The 75MHz clock produces the cleanest possible Sine waveform at high frequencies, while the low frequencies create

errors. In addition to these features, the Waveform 2 Click also has an EEPROM memory IC the 24AA64, an i2C configurable 64K serial EEPROM from Microchip that can be used for various storage applications. The Waveform 2 Click communicates with MCU using the 3-Wire SPI serial interface compatible with standard SPI, QSPI™, and MICROWIRE™ and operates at clock rates up to 40 MHz. Besides, it possesses additional functionality such as reset function, necessary during AD9834 initialization, implemented and routed at the RST pin of the mikroBUS™ socket. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Waveform 2 Click top side image
Waveform 2 Click lateral side image
Waveform 2 Click bottom side image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PK3
RST
SPI Chip Select
PH0
CS
SPI Clock
PQ0
SCK
NC
NC
MISO
SPI Data IN
PQ2
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Enable
PL4
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD2
SCL
I2C Data
PD3
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Waveform 2 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Waveform 2 Click driver.

Key functions:

  • void waveform2_set_freq ( uint32_t freq ) - Function for setting the output frequency.
  • void waveform2_sine_output ( void ) - Function for setting the sine output.
  • void waveform2_triangle_output ( void ) - Function for setting the triangle output.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Waveform2 Click example
 *
 * # Description
 * This is an example that demonstrates the use of the Waveform 2 Click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialize the communication interface, preforming hardware reset, and configure the click board.
 *
 * ## Application Task
 * Predefined characters are inputed from the serial port.
 * Depending on the character sent the signal frequency, waveform or amplitude
 * will be changed.
 *
 * - Command:
 * [ + ] - Increase frequency
 * [ - ] - Decrease frequency
 * [ t ] - Triangle-shaped signal
 * [ s ] - The signal in the form of a sinusoid
 * 
 * - Additional Functions :
 * aprox_freq_calculation( float freqency ) - This function is used to calculate the aproximate 
 * value that will be written to the frequency set register.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "waveform2.h"

static waveform2_t waveform2;
static log_t logger;

float value = 100000;
char demo_rx_buf[ 10 ];
char demo_tx_buf[ 10 ] = "MikroE";

/**
 * @brief Aproximate frequency calculation function.
 * @details This function is used to calculate the aproximate value that will be 
 * written to the frequency set register..
 */
uint32_t aprox_freq_calculation ( float freqency );

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    waveform2_cfg_t waveform2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    waveform2_cfg_setup( &waveform2_cfg );
    WAVEFORM2_MAP_MIKROBUS( waveform2_cfg, MIKROBUS_1 );
    err_t init_flag  = waveform2_init( &waveform2, &waveform2_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    waveform2_default_cfg ( &waveform2 );

    log_printf( &logger, "---- EEPROM test ----\r\n " );
    log_printf( &logger, ">> Write [MikroE] to address 0x0123\r\n " );
    waveform2_eeprom_write_string( &waveform2, 0x0123, demo_tx_buf, 6 );
    waveform2_eeprom_read_string ( &waveform2, 0x0123, demo_rx_buf, 6 );
    log_printf( &logger, ">> Read data: %s  from address 0x0123.... \r\n ", demo_rx_buf );
    Delay_ms( 1000 );
    waveform2_hw_reset( &waveform2 );
    Delay_ms( 1000 );
    
    log_printf( &logger, "---- Waveform set freqency ----\r\n" );
    int32_t freqency;
    freqency = aprox_freq_calculation( value );
    waveform2_set_freq( &waveform2, freqency );
    waveform2_triangle_output( &waveform2 );
    Delay_ms( 1000 );
    log_info( &logger, " Application Task " );
}

void application_task ( void ) {
    char rx_data;
    uint32_t freq_data;

    if ( log_read( &logger, &rx_data, 1 ) ) {
        switch ( rx_data ) {
            case '+': {
                if ( value > 200000 ) {
                    value = 0;
                }
                value += 100000;
                freq_data = aprox_freq_calculation( value );
                waveform2_set_freq( &waveform2, freq_data );
                log_printf( &logger, ">> Increasing the frequency \r\n " );
                break;
            }

            case '-': {
                if ( value < 200000 ) {
                    value = 400000;
                }
                value -= 100000;
                freq_data = aprox_freq_calculation( value );
                waveform2_set_freq( &waveform2, freq_data );
                log_printf( &logger, ">> Decreasing the frequency \r\n " );
                break;
            }

            case 't': {
                waveform2_triangle_output( &waveform2 );
                log_printf( &logger, ">> Triangle output \r\n " );
                break;
            }

            case 's': {
                waveform2_sine_output( &waveform2 );
                log_printf( &logger,  ">> Sinusoid output \r\n " );
                break;
            }
        }
    }
}

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

uint32_t aprox_freq_calculation ( float freqency ) {
    uint32_t calculation;
    float WAVEFORM_OSC_FREQ = 50000000.0;
    float WAVEFORM_CONSTANT = 268435456.0; 

    calculation = freqency * ( WAVEFORM_CONSTANT / WAVEFORM_OSC_FREQ );

    return calculation;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.