Intermediate
30 min

Experience motion sensing like never before with MC3635 and PIC32MX664F064L

Go beyond mere motion detection

Accel 30 Click with Fusion for PIC32 v8

Published Sep 13, 2023

Click board™

Accel 30 Click

Dev Board

Fusion for PIC32 v8

Compiler

NECTO Studio

MCU

PIC32MX664F064L

Sensing in three dimensions has never been more magical, thanks to this 3D acceleration sensor that enhance the way you interact with the world

A

A

Hardware Overview

How does it work?

Accel 30 Click is based on the MC3635, a highly reliable digital triaxial acceleration sensor from MEMSIC. The MC3635 is highly configurable with a programmable acceleration range of ±2g, ±4g, ±8g, ±12g, or ±16g, and an internal sample rate from 14 to 1300 samples/second. It contains a 12-bit 32-sample FIFO with a programmable watermark and can be put into several operational modes, such as Sleep/Standby/Sniff/Swake/Cwake/Trig, depending upon the desired sensing application. In addition to all these features, the MC3635 is characterized by excellent temperature stability,

low noise, and low power consumption. This Click board™ allows the use of both I2C and SPI interfaces at a maximum frequency of 1MHz for I2C and 8MHz for SPI communication. Selection is made by positioning SMD jumpers marked COMM SEL to the appropriate position. All jumpers must be on the same side, or the Click board™ may become unresponsive. When the I2C interface is selected, the MC3635 allows the choice of its I2C slave address, using the ADDR SEL SMD jumper set to an appropriate position marked 0 and 1. In addition to communication pins, this board also

possesses an additional interrupt pin, routed to the INT pin on the mikroBUS™ socket, to signal MCU that an event, such as specific tap or sample acquisition conditions, has happened. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Accel 30 Click top side image
Accel 30 Click bottom side image

Features overview

Development board

Fusion for PIC32 v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of Microchip's PIC32 microcontrollers regardless of their number of pins and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for PIC32 v8 provides a fluid and immersive working experience, allowing access anywhere and under any circumstances at any time. Each part of the

Fusion for PIC32 v8 development board contains the components necessary for the most efficient operation of the same board. In addition to the advanced integrated CODEGRIP programmer/debugger module, which offers many valuable programming/debugging options and seamless integration with the Mikroe software environment, the board also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector. Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if

supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for PIC32 v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for PIC32 v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

PIC32

MCU Memory (KB)

64

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

32768

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PD7
CS
SPI Clock
PD10
SCK
SPI Data OUT
PC4
MISO
SPI Data IN
PD0
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PE8
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PA2
SCL
I2C Data
PA3
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

Accel 30 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for PIC32 v8 as your development board.

Fusion for PIC v8 front image hardware assembly
Buck 22 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
v8 SiBRAIN MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.

2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.

3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.

4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART_Application_Output

Software Support

Library Description

This library contains API for Accel 30 Click driver.

Key functions:

  • accel30_get_axis - Accel 30 get accel data function

  • accel30_set_resolution_ctrl - Accel 30 set resolution control function

  • accel30_set_mode - Accel 30 set operating mode function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Accel 30 Click example
 *
 * # Description
 * This library contains API for Accel 30 Click driver.
 * The library initializes and defines the I2C or SPI bus drivers 
 * to write and read data from registers. 
 * The library also includes a function for reading X-axis, Y-axis, and Z-axis data.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * The initialization of I2C or SPI module, log UART, and additional pins.
 * After the driver init, the app executes a default configuration.
 *
 * ## Application Task
 * This example demonstrates the use of the Accel 30 Click board™.
 * Measures and displays acceleration data for X-axis, Y-axis, and Z-axis.
 * Results are being sent to the UART Terminal, where you can track their changes.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "accel30.h"

static accel30_t accel30;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    accel30_cfg_t accel30_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    accel30_cfg_setup( &accel30_cfg );
    ACCEL30_MAP_MIKROBUS( accel30_cfg, MIKROBUS_1 );
    err_t init_flag = accel30_init( &accel30, &accel30_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ACCEL30_ERROR == accel30_default_cfg ( &accel30 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "------------------------\r\n" );
    log_printf( &logger, "       Accel Data       \r\n" );
    log_printf( &logger, "------------------------\r\n" );
    Delay_ms( 100 ); 
}

void application_task ( void )
{
    static accel30_axis_t axis;
    if ( ACCEL30_OK == accel30_get_axis( &accel30, &axis ) )
    {
        log_printf( &logger, "\tX : %d \r\n\tY : %d \r\n\tZ : %d \r\n", axis.x, axis.y, axis.z );
        log_printf( &logger, "------------------------\r\n" );
    }
    Delay_ms( 1000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.