Intermediate
30 min

Experience the next level of charging efficiency with MCP73113 and ATmega324P

Your devices deserve the best charging experience

Charger 5 click with EasyAVR v7

Published Jun 08, 2023

Click board™

Charger 5 click

Dev Board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega324P

Say goodbye to low battery anxiety with our reliable charging solution

A

A

Hardware Overview

How does it work?

Charger 5 Click is based on the MCP73113, a single-cell Li-Po/Li-Ion battery charge from Microchip, along with the digital potentiometer chip labeled as MCP4161, from the same company. This click can easily and securely charge and fast-charge batteries on many devices that use 3.7V Li-Po/Li-Ion batteries. The constant charging current on the MCP73113 is set by a resistor connected between the PROG pin and the VCC; instead of using the conventional resistor, this board employs the MCP4161 digital potentiometer IC, which allows setting the constant charging current via the SPI interface. This way, the constant charging current can be set from 100mA to 950mA. The MCP73113 charger features several different battery charging protection and optimization schemes to keep the charging process safe and efficient. The undervoltage protection shuts the charger circuit down if the connected input voltage is below the threshold value.

The overvoltage protection will also put the device in shutdown mode if the input voltage exceeds the threshold value. Also, the connected input voltage should be 150mV greater than the battery voltage, or else it will remain in a power-down state. This prevents the battery from draining in case there's no input voltage. Therefore, the input voltage range should stay between 5V and 6.5V. The device is resistant to voltage spikes up to 18V on its input connector, but for proper operation, the input voltage should stay in the recommended voltage range. The connected battery voltage is constantly monitored. If it drops below the charging threshold and if all the other input voltage charging conditions are met, the charging process will start. When the battery is charged to the factory-set threshold, the charging will be stopped to prevent battery overcharging. The charging threshold for the MCP73113 charger IC used on this click is set to 4.2V.

If a Li-Ion battery is discharged below 3V, it must be pre-charged with around 10% of the full charge current. This means that the charging current, in this case, will be 10% of the fast charging current set by the MCP4161 digital potentiometer. Charger 5 click detects a short circuit on the battery connector. The short circuit is also reported in case of a faulty battery cell. If such an event occurs, the charger will enter the shutdown mode. The MCP73113 charger IC features thermal management too, which regulates the charging current, based on the die temperature. If the IC die is heated over 150°C, the device will be shut down. The onboard SMD jumper selector selects voltage for the digital potentiometer IC and SPI logic levels. There are also two onboard connectors. One connector is a screw terminal used to connect the external power supply (5V to 6.5V). The other connector is the Li-Po/Li-Ion battery 2.54mm header connector.

Charger 5 click hardware overview image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

ATmega324P

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

2048

You complete me!

Accessories

Li-Polymer Battery is the ideal solution for devices that demand a dependable and long-lasting power supply while emphasizing mobility. Its compatibility with mikromedia boards ensures easy integration without additional modifications. With a voltage output of 3.7V, the battery meets the standard requirements of many electronic devices. Additionally, boasting a capacity of 2000mAh, it can store a substantial amount of energy, providing sustained power for extended periods. This feature minimizes the need for frequent recharging or replacement. Overall, the Li-Polymer Battery is a reliable and autonomous power source, ideally suited for devices requiring a stable and enduring energy solution. You can find a more extensive choice of Li-Polymer batteries in our offer.

Charger 5 Click accessories image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PA5
CS
SPI Clock
PB7
SCK
NC
NC
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Charger 5 click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
GNSS2 Click front image hardware assembly
MCU DIP 40 hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
EasyAVR v7 Access DIP MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for Charger 5 Click driver.

Key functions:

  • charger5_generic_write - Generic write function

  • charger5_generic_read  -Generic read function

  • charger5_increment_wiper - Increment wiper function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file main.c
 * \brief Charger 5 Click example
 *
 * # Description
 * This example demonstrates the use of the Charger 5 click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes peripherals and pins used for the Charger 5 click and prepares
 * the Charger 5 click for properly working.
 *
 * ## Application Task
 * Demonstrates the use of driver functions. It will set charging current to
 * 500 mA, then will increment that value by 10 steps, and after that will
 * decrement it by 5 steps.
 *
 * ## Note
 * Increment/decrement command can only be issued to volatile memory locations.
 *
 * \author Nemanja Medakovic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "charger5.h"

// ------------------------------------------------------------------ VARIABLES

static charger5_t charger5;
static log_t console;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init( void )
{
    charger5_cfg_t charger5_cfg;
    log_cfg_t console_cfg;

    //  Click initialization.
    charger5_cfg_setup( &charger5_cfg );
    CHARGER5_MAP_MIKROBUS( charger5_cfg, MIKROBUS_1 );
    charger5_init( &charger5, &charger5_cfg );
    charger5_default_cfg( &charger5 );

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( console_cfg );
    log_init( &console, &console_cfg );
    log_printf( &console, "***  Charger 5 initialization done  ***\r\n" );
    log_printf( &console, "***************************************\r\n" );
}

void application_task( void )
{
    charger5_generic_write( &charger5, CHARGER5_REG_WIPER0_VOL,
                            CHARGER5_CURRENT_500MA );
    log_printf( &console, "Output current is set to 500 mA.\r\n" );
    Delay_ms( 3000 );

    charger5_increment_wiper( &charger5, CHARGER5_REG_WIPER0_VOL,
                              CHARGER5_STEPS_10 );
    log_printf( &console, "Output current value is incremented by 10 steps.\r\n" );
    Delay_ms( 3000 );

    charger5_decrement_wiper( &charger5, CHARGER5_REG_WIPER0_VOL,
                              CHARGER5_STEPS_5 );
    log_printf( &console, "Output current value is decremented by 5 steps.\r\n" );
    Delay_ms( 3000 );
}

void main( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources