Intermediate
30 min

Switch and multiplex I2C signals with ease using TCA9543A and ATmega644

Simplify I2C connections

I2C MUX 4 Click with EasyAVR v7

Published Sep 10, 2023

Click board™

I2C MUX 4 Click

Dev. board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega644

Elevate your I2C communication capabilities and unlock the full potential of your connected devices with our I2C multiplexer solution

A

A

Hardware Overview

How does it work?

I2C MUX 4 Click is based on the TCA9543A, a 2-channel, bidirectional translating I2C switch from Texas Instruments. The master SCL/SDA signal pair is directed to two channels of slave devices SC0/SD0 - SC1/SD1 where either individual channel or both channels can be selected determined by the programmable control register. The TCA9543A supports interrupt signals for the Master to detect an interrupt that can result from any of the slave devices connected to the interrupt pins on the output I2C channel header. It features I2C control using a single 8-bit control register in which bits 1 and 0 control the enabling and disabling of the two switch channels of I2C data flow, it supports a reset function, hot insertion, and has all switch channels deselected during Power-Up. This Click board™ includes a low dropout linear regulator

AP7331 from Diodes Incorporated to provide the 2.45V supply voltage for the TCA9543A. When the TCA9543APWR is turned on for the first time or anytime the device needs to be reset by cycling the power supply, which means that the Power-On reset requirements must be followed to ensure the I2C bus logic is initialized properly. The TCA9543APWR can also be reset to its default conditions by using the Power-On reset feature in the event of a glitch or data corruption. I2C MUX 4 Click communicates with MCU using the standard I2C 2-Wire interface that supports Standard-Mode (100 kHz) and Fast-Mode (400 kHz) operation. The TCA9543A generates a programmable interrupt signal routed on the INT pin of the mikroBUS™ used for the Master to detect an interrupt which can result from any of the slave devices

connected to the output I2C channel pins. It also has two address pins that allow the choice of the least significant bit (LSB) of its I2C slave address which can be done by using the SMD jumper labeled as ADDR SEL, and a Reset function routed on the RST pin of the mikroBUS™ socket used to recover the TCA9543A from a bus-fault condition. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

I2C MUX 4 Click top side image
I2C MUX 4 Click bottom side image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

ATmega644

Architecture

AVR

MCU Memory (KB)

64

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

4096

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PA6
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PD2
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC0
SCL
I2C Data
PC1
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

I2C MUX 4 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
GNSS2 Click front image hardware assembly
MCU DIP 40 hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
EasyAVR v7 Access DIP MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for I2C MUX 4 Click driver.

Key functions:

  • i2cmux4_get_ch_interrupt - Get channel interrupt function

  • i2cmux4_rmt_read_bytes - Generic read data function

  • i2cmux4_check_int - Check interrupt function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief I2cMux4 Click example
 * 
 * # Description
 * This example demonstrates the use of the I2C MUX 4 Click.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver, enables the Click board and makes an initial log.
 * 
 * ## Application Task  
 * In this example, we read the device ID register of the connected Click boards.
 * Channel 0 : 6DOF IMU 12 Click [slave address: 0x68; reg: 0x00; id val.: 0x24],
 * Channel 1 : Compass 3 Click   [slave address: 0x30; reg: 0x2F; id val.: 0x0C].
 * All data logs write on USB UART changes every 2 sec.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "i2cmux4.h"

// ------------------------------------------------------------------ VARIABLES

static i2cmux4_t i2cmux4;
static log_t logger;

uint8_t rx_data;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    i2cmux4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    i2cmux4_cfg_setup( &cfg );
    I2CMUX4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    i2cmux4_init( &i2cmux4, &cfg );

    i2cmux4_power_on( &i2cmux4, I2CMUX4_ENABLE_POWER_ON );
    Delay_ms ( 100 );
    
    i2cmux4_set_channel( &i2cmux4, I2CMUX4_SEL_CH_ALL_DISABLE, 0x00 );
    Delay_ms ( 100 );
}

void application_task ( void )
{
    // CH 0 - 6DOF IMU 12 Click
    i2cmux4_set_channel( &i2cmux4, I2CMUX4_SEL_CH_0, 0x68 );
    Delay_ms ( 100 );

    i2cmux4_rmt_read_bytes( &i2cmux4, 0x00, &rx_data, 1 );
    Delay_ms ( 100 );

    log_printf( &logger, "    6DOF IMU 12 Click   \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - \r\n" );
    log_printf( &logger, "       ID = 0x%.2X  \r\n", ( uint16_t ) rx_data );
    log_printf( &logger, "----------------------- \r\n" );
    Delay_ms ( 1000 );
    
    
    // CH 1 - Compass 3 Click
    i2cmux4_set_channel( &i2cmux4, I2CMUX4_SEL_CH_1, 0x30 );
    Delay_ms ( 100 );

    i2cmux4_rmt_read_bytes( &i2cmux4, 0x2F, &rx_data, 1 );
    Delay_ms ( 100 );

    log_printf( &logger, "      Compass 3 Click      \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - \r\n" );
    log_printf( &logger, "       ID = 0x%.2X \r\n ", ( uint16_t ) rx_data );
    log_printf( &logger, "----------------------- \r\n" );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.