Enhance navigational precision, retain control, and easily adapt to changes in orientation
A
A
Hardware Overview
How does it work?
Gyro 9 Click is based on the A3G4250D, a MEMS motion sensor from STMicroelectronics. It includes a sensing element and an IC interface capable of providing the measured angular rate to the host MCU. The sensor has a full scale of ±245dps and can measure rates with a user-selectable bandwidth. The sensor also embeds a 32-slot, 16-bit data FIFO for each of the three output channels: yaw, pitch, and roll. This allows consistent power saving for the system, as the host MCU doesn’t need to poll the data continuously. There is also a Bypass mode,
which prevents FIFO from being operational and leaves it empty. The third mode is a Stream mode. Gyro 9 Click can use both the 4-wire SPI serial interface and the I2C interface to communicate with the host MCU. The selection can be made over the COMM SEL. The SPI is selected by default and supports clock frequency up to 10MHz. The I2C interface supports frequencies up to 400KHz. The I2C address can be selected over the ADDR SEL jumper (0 set by default). The gyroscope can be reset over the RST pin. The INT pin is a programmable interrupt and can be used in a
combination of events. The DR is a data-ready output that generates dedicated interrupts depending on FIFO or Stream mode statuses. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Features overview
Development board
PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under
any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard
and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Architecture
PIC32
MCU Memory (KB)
1024
Silicon Vendor
Microchip
Pin count
64
RAM (Bytes)
524288
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for Gyro 9 Click driver.
Key functions:
gyro9_get_gyro_axis
- Gyro 9 get gyro sensor axes function.gyro9_get_axis_data
- Gyro 9 get gyro data function.gyro9_get_data_ready
- Gyro 9 get data ready function.
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* @file main.c
* @brief Gyro 9 Click example
*
* # Description
* This library contains API for Gyro 9 Click driver.
* The library initializes and defines the I2C and SPI bus drivers to
* write and read data from registers, as well as the default
* configuration for reading gyroscope data.
*
* The demo application is composed of two sections :
*
* ## Application Init
* The initialization of I2C or SPI module, log UART, and additional pins.
* After the driver init, the app executes a default configuration.
*
* ## Application Task
* This example demonstrates the use of the Gyro 9 Click board™.
* Measures and displays gyroscope angular rate for X-axis, Y-axis, and Z-axis.
* Results are being sent to the UART Terminal, where you can track their changes.
*
* @author Nenad Filipovic
*
*/
#include "board.h"
#include "log.h"
#include "gyro9.h"
static gyro9_t gyro9;
static log_t logger;
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
gyro9_cfg_t gyro9_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
gyro9_cfg_setup( &gyro9_cfg );
GYRO9_MAP_MIKROBUS( gyro9_cfg, MIKROBUS_1 );
err_t init_flag = gyro9_init( &gyro9, &gyro9_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( GYRO9_ERROR == gyro9_default_cfg ( &gyro9 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
log_printf( &logger, "_________________\r\n" );
Delay_ms ( 100 );
}
void application_task ( void )
{
gyro9_axis_t gyro_axis;
if ( gyro9_get_data_ready( &gyro9 ) )
{
if ( GYRO9_OK == gyro9_get_gyro_axis( &gyro9, &gyro_axis ) )
{
log_printf( &logger, " Gyro X: %.2f pds\r\n", gyro_axis.x );
log_printf( &logger, " Gyro Y: %.2f pds\r\n", gyro_axis.y );
log_printf( &logger, " Gyro Z: %.2f pds\r\n", gyro_axis.z );
log_printf( &logger, "_________________\r\n" );
Delay_ms ( 1000 );
}
}
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END