Beginner
10 min

Maintain stability and orientation A3G4250D and PIC32MZ1024EFH064

Measure and maintain position and orientation in space

Gyro 9 Click with PIC32MZ clicker

Published Dec 10, 2023

Click board™

Gyro 9 Click

Dev. board

PIC32MZ clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFH064

Enhance navigational precision, retain control, and easily adapt to changes in orientation

A

A

Hardware Overview

How does it work?

Gyro 9 Click is based on the A3G4250D, a MEMS motion sensor from STMicroelectronics. It includes a sensing element and an IC interface capable of providing the measured angular rate to the host MCU. The sensor has a full scale of ±245dps and can measure rates with a user-selectable bandwidth. The sensor also embeds a 32-slot, 16-bit data FIFO for each of the three output channels: yaw, pitch, and roll. This allows consistent power saving for the system, as the host MCU doesn’t need to poll the data continuously. There is also a Bypass mode,

which prevents FIFO from being operational and leaves it empty. The third mode is a Stream mode. Gyro 9 Click can use both the 4-wire SPI serial interface and the I2C interface to communicate with the host MCU. The selection can be made over the COMM SEL. The SPI is selected by default and supports clock frequency up to 10MHz. The I2C interface supports frequencies up to 400KHz. The I2C address can be selected over the ADDR SEL jumper (0 set by default). The gyroscope can be reset over the RST pin. The INT pin is a programmable interrupt and can be used in a

combination of events. The DR is a data-ready output that generates dedicated interrupts depending on FIFO or Stream mode statuses. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Gyro 9 Click hardware overview image

Features overview

Development board

PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under

any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard

and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

PIC32MZ clicker double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

64

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Data Ready Output
RE4
AN
Reset / ID SEL
RE5
RST
SPI Select / ID COMM
RG9
CS
SPI Clock
RG6
SCK
SPI Data OUT
RG7
MISO
SPI Data IN
RG8
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
RB5
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RD10
SCL
I2C Data
RD9
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Gyro 9 Click Schematic schematic

Step by step

Project assembly

PIC32MZ clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the PIC32MZ clicker as your development board.

PIC32MZ clicker front image hardware assembly
Thermo 26 Click front image hardware assembly
Prog-cut hardware assembly
Micro B Connector clicker - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Gyro 9 Click driver.

Key functions:

  • gyro9_get_gyro_axis - Gyro 9 get gyro sensor axes function.

  • gyro9_get_axis_data - Gyro 9 get gyro data function.

  • gyro9_get_data_ready - Gyro 9 get data ready function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Gyro 9 Click example
 *
 * # Description
 * This library contains API for Gyro 9 Click driver.
 * The library initializes and defines the I2C and SPI bus drivers to 
 * write and read data from registers, as well as the default 
 * configuration for reading gyroscope data.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * The initialization of I2C or SPI module, log UART, and additional pins.
 * After the driver init, the app executes a default configuration.
 *
 * ## Application Task
 * This example demonstrates the use of the Gyro 9 Click board™.
 * Measures and displays gyroscope angular rate for X-axis, Y-axis, and Z-axis.
 * Results are being sent to the UART Terminal, where you can track their changes.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "gyro9.h"

static gyro9_t gyro9;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gyro9_cfg_t gyro9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gyro9_cfg_setup( &gyro9_cfg );
    GYRO9_MAP_MIKROBUS( gyro9_cfg, MIKROBUS_1 );
    err_t init_flag = gyro9_init( &gyro9, &gyro9_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( GYRO9_ERROR == gyro9_default_cfg ( &gyro9 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
    log_printf( &logger, "_________________\r\n" );
    Delay_ms ( 100 );
}

void application_task ( void )
{
    gyro9_axis_t gyro_axis;
    if ( gyro9_get_data_ready( &gyro9 ) )
    {
        if ( GYRO9_OK == gyro9_get_gyro_axis( &gyro9, &gyro_axis ) )
        {
            log_printf( &logger, " Gyro X: %.2f pds\r\n", gyro_axis.x );
            log_printf( &logger, " Gyro Y: %.2f pds\r\n", gyro_axis.y );
            log_printf( &logger, " Gyro Z: %.2f pds\r\n", gyro_axis.z );
            log_printf( &logger, "_________________\r\n" );
            Delay_ms ( 1000 );
        }
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.