Intermediate
30 min

Create a fully isolated CAN interface with ADM3053 and PIC32MZ1024EFH064

Isolated CAN communication

CAN Isolator Click with PIC32MZ clicker

Published Aug 03, 2023

Click board™

CAN Isolator Click

Dev. board

PIC32MZ clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFH064

This innovative solution optimizes signal integrity, enhances noise immunity, and efficiently manages power conversion, making it the ideal choice for critical applications

A

A

Hardware Overview

How does it work?

CAN Isolator Click is based on the ADM3053, a power isolated CAN transceiver with an integrated isolated DC-to-DC converter from Analog Devices. The click is designed to run on either 3.3V or 5V power supply. CAN Isolator Click communicates

with the target microcontroller over the UART interface. The ADM3053 is an isolated controller area network (CAN) physical layer transceiver with an integrated isolated DC-to-DC converter. The ADM3053 creates a fully isolated

interface between the CAN protocol controller and the physical layer bus. It is capable of running at data rates of up to 1Mbps.

CAN Isolator Click top side image
CAN Isolator Click bottom side image

Features overview

Development board

PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under

any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard

and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

PIC32MZ clicker double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

64

RAM (Bytes)

524288

You complete me!

Accessories

DB9 Cable Female-to-Female (2m) cable is essential for establishing dependable serial data connections between devices. With its DB9 female connectors on both ends, this cable enables a seamless link between various equipment, such as computers, routers, switches, and other serial devices. Measuring 2 meters in length, it offers flexibility in arranging your setup without compromising data transmission quality. Crafted with precision, this cable ensures consistent and reliable data exchange, making it suitable for industrial applications, office environments, and home setups. Whether configuring networking equipment, accessing console ports, or utilizing serial peripherals, this cable's durable construction and robust connectors guarantee a stable connection. Simplify your data communication needs with the 2m DB9 female-to-female cable, an efficient solution designed to meet your serial connectivity requirements easily and efficiently.

CAN Isolator Click accessories image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
UART TX
RB2
TX
UART RX
RB0
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

CAN Isolator Click  Schematic schematic

Step by step

Project assembly

PIC32MZ clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the PIC32MZ clicker as your development board.

PIC32MZ clicker front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Board mapper by product7 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Software Support

Library Description

This library contains API for CAN Isolator Click driver.

Key functions:

  • canisolator_generic_multi_write - Generic multi write function

  • canisolator_generic_multi_read - Generic multi read function

  • canisolator_generic_single_read - Generic single read function

  • canisolator_generic_single_write - Generic single write function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief CanIsolator Click example
 * 
 * # Description
 * This is a example which demonstrates the use of Can Isolator Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Configuring Clicks and log objects.
 * 
 * ## Application Task  
 * Checks if new data byte has received in RX buffer ( ready for reading )
 * and if ready than reads one byte from RX buffer.
 * In the second case, the application task writes message data via UART.
 * Results are being sent to the Usart Terminal where you can track their changes.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "canisolator.h"

// ------------------------------------------------------------------ VARIABLES

//#define DEMO_APP_RECEIVER
#define DEMO_APP_TRANSMITER

static canisolator_t canisolator;
static log_t logger;

static char demo_message[ 9 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 13, 10, 0 };

// ------------------------------------------------------- ADDITIONAL FUNCTIONS


// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    canisolator_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    canisolator_cfg_setup( &cfg );
    CANISOLATOR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    canisolator_init( &canisolator, &cfg );
    
    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, " CAN Isolator  Click\r\n" );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 100 );
}

void application_task ( void )
{
    char tmp;
    
#ifdef DEMO_APP_RECEIVER

    // RECEIVER - UART polling

    tmp =  canisolator_generic_single_read( &canisolator );
    log_printf( &logger, " %c ", tmp );
    
#endif
#ifdef DEMO_APP_TRANSMITER

    // TRANSMITER - TX each 2 sec
    
    uint8_t cnt;
        
    for ( cnt = 0; cnt < 9; cnt ++ )
    {
        canisolator_generic_single_write( &canisolator, demo_message[ cnt ] );
        Delay_ms ( 100 );
    }
    
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
#endif

}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.