Beginner
10 min

Unleash your creative potential with MI9639BO-B2 and MK64FN1M0VDC12

Shine brighter with monochrome

OLED B Click with Clicker 2 for Kinetis

Published Sep 15, 2023

Click board™

OLED B Click

Dev Board

Clicker 2 for Kinetis

Compiler

NECTO Studio

MCU

MK64FN1M0VDC12

See how our OLED solution empowers you to push the boundaries of design, functionality, and energy efficiency, making your products stand out in the market

A

A

Hardware Overview

How does it work?

OLED B Click is based on the MI9639BO-B2, a 19.3x7.8mm 96x39px light blue monochrome passive matrix OLED display from Multi-Inno Technology. The MI9639BO-B2 display features an SSD1306, a 128x64 dot-matrix OLED/PLED segment/common driver with a controller. The controller has built-in functionalities like contrast control (256-step brightness control), normal or inverse image display, vertical and horizontal scrolling functions, and much more accessible through the I2C serial interface. OLEDs are emissive and don't require a separate backlight as LCD technology does, reducing the OLED display's overall power consumption compared to LCDs. It also does not suffer from loss of contrast due to bleed-through of the backlight in the "off" pixels. OLEDs, being emissive, have a consistent contrast ratio greater than 100:1 with no limitation in viewing angle. In addition, they don't suffer from temperature-related response time delays and

contrast changes. Like any OLED display, the MI9639BO-B2 is made from a thin film of an organic compound that emits light when exposed to a current. A small monochrome display like this represents an ideal solution for displaying text or icons. The MI9639BO-B2 display is bright, has a wide viewing angle, and has low power consumption. In addition to the display's main power supply, taken from the +3.3V microBUS™ power rail, the MI9639BO-B2 has another power pin, more precisely, the power supply for the DC/DC converter circuit. This pin is the power supply pin for the internal buffer of the DC/DC voltage converter. Therefore, for this pin, the Click board™ uses a low dropout linear regulator AP7331 from Diodes Incorporated, providing a 3.6V power supply out of 5V mikroBUS™ rail. OLED B Click communicates with MCU using the standard I2C 2-Wire interface to read data and configure settings. It allows the communication-enable

feature to be routed to the CS pin of the mikroBUS™ socket, enabling the OLED B Click for MCU communication only when the CS pin is pulled to a low logic state. In addition, it has two more pins. The first is related to the reset function, routed to the RST pin on the mikroBUS™ socket (when the pin is in a low logic state, the initialization of the chip is executed), and the second is labeled as D/C and routed to the PWM pin on the mikroBUS™ socket is I2C slave address selection pin. This Click board™ is designed to be operated only with a 3.3V logic voltage level, while 5V is used as a supply voltage of the AP7331 LDO. The board must perform appropriate logic voltage level conversion before use with MCUs with different logic levels. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

OLED B Click top side image
OLED B Click bottom side image

Features overview

Development board

Clicker 2 for Kinetis is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit ARM Cortex-M4F microcontroller, the MK64FN1M0VDC12 from NXP Semiconductors, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a JTAG programmer connector, and two 26-pin headers for interfacing with external electronics. Its compact design with clear and easily recognizable silkscreen markings allows you to build gadgets with unique functionalities and

features quickly. Each part of the Clicker 2 for Kinetis development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the Clicker 2 for Kinetis programming method, using a USB HID mikroBootloader or an external mikroProg connector for Kinetis programmer, the Clicker 2 board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Micro-B cable, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or

using a Li-Polymer battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several user-configurable buttons and LED indicators. Clicker 2 for Kinetis is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Clicker 2 for Kinetis dimensions image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

NXP

Pin count

121

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PB11
RST
Communication Enable
PC4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
I2C Address Selection
PA10
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD8
SCL
I2C Data
PD9
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

OLED B Click Schematic schematic

Step by step

Project assembly

Clicker 2 for PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Clicker 2 for Kinetis as your development board.

Clicker 2 for PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
Micro B Connector Clicker 2 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for OLED B Click driver.

Key functions:

  • oledb_display_picture - This function allows user to display picture for on the screen

  • oledb_clear_display - This function clears SSD1306 controller display

  • oledb_write_string - This function writes a text string from the selected position in a 5x7 or 6x8 font size

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief OLEDB Click example
 *
 # Description
 * This example demonstrates the use (control) of the OLED B display.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Configures the microcontroller for communication and initializes the click
 * board to default state.
 *
 * ## Application Task
 * This section contains the main program that is executed showing a practical
 * example on how to use the implemented functions.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "oledb.h"
#include "resources.h"

static oledb_t oledb;
static log_t logger;

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    oledb_cfg_t oledb_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.
    oledb_cfg_setup( &oledb_cfg );
    OLEDB_MAP_MIKROBUS( oledb_cfg, MIKROBUS_1 );
    err_t init_flag  = oledb_init( &oledb, &oledb_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    oledb_default_cfg ( &oledb );
    log_info( &logger, " Application Task " );
}

void application_task ( void ) {
    uint8_t i;

    oledb_display_picture( &oledb, oledb_img );
    Delay_ms( 500 );
    oledb_send( &oledb, OLEDB_INVERTDISPLAY, OLEDB_COMMAND );
    Delay_ms( 500 );
    oledb_send( &oledb, OLEDB_NORMALDISPLAY, OLEDB_COMMAND );
    Delay_ms( 500 );
    oledb_send( &oledb, OLEDB_INVERTDISPLAY, OLEDB_COMMAND );
    Delay_ms( 500 );
    oledb_send( &oledb, OLEDB_NORMALDISPLAY, OLEDB_COMMAND );
    Delay_ms( 300 );

    for (i = 0xAF; i > 0x00; i--) {
        oledb_set_contrast( &oledb, i );
        Delay_ms( 5 );
    }

    for (i = 0x00; i < 0xAF; i++) {
        oledb_set_contrast( &oledb, i );
        Delay_ms( 5 );
    }

    oledb_scroll_right( &oledb, 0x00, 0x05 );
    Delay_ms( 1000 );
    oledb_stop_scroll( &oledb );
    oledb_display_picture( &oledb, oledb_img );

    oledb_scroll_left( &oledb, 0x00, 0x05 );
    Delay_ms( 1000 );
    oledb_stop_scroll( &oledb );
    oledb_display_picture( &oledb, oledb_img );

    oledb_scroll_diag_right( &oledb, 0x00, 0x05 );
    Delay_ms( 1000 );
    oledb_stop_scroll( &oledb );
    oledb_display_picture( &oledb, oledb_img );

    oledb_scroll_diag_left( &oledb, 0x00, 0x05 );
    Delay_ms( 1000 );
    oledb_stop_scroll( &oledb );
}

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.