Beginner
10 min

Capture and decode barcodes from various media using the LV30 barcode scanner and STM32F722VE

OEM scan engine for outstanding screen code scanning performance

Barcode 3 Click with UNI Clicker

Published Aug 12, 2024

Click board™

Barcode 3 Click

Dev. board

UNI Clicker

Compiler

NECTO Studio

MCU

STM32F722VE

Read a wide range of 1D and 2D barcode types, including QR codes, data matrices, and linear barcodes

A

A

Hardware Overview

How does it work?

Barcode 3 Click is based on the LV30, an area image engine from Rakinda designed for efficient barcode scanning. This component features a laser aiming system and an LED illumination system, meeting the safety standards of IEC 62471:2006 for LEDs and IEC 60825:2014 for lasers. The LV30 incorporates a CMOS image sensor and a sophisticated image recognition system-on-chip, enabling quick and accurate decoding of barcodes on various media, including paper and magnetic cards. This versatile engine can be easily integrated into OEM equipment such as handheld, portable, or stationary barcode scanners, making it an excellent choice for upgrading from 1D to 2D barcode scanning solutions. The LV30 is equipped with a red LED (wavelength: 625±10nm) for additional lighting, allowing for barcode scanning even in complete darkness, with the option to turn the illumination ON or OFF. It also includes a laser aimer to help users accurately position the barcode within the scanning area, enhancing efficiency. The aiming pattern can be toggled ON or OFF, with the recommendation to keep it on during scanning for

better accuracy. When using the Barcode 3 Click for scanning through a specific surface, it is crucial to ensure proper protection against dust and other contaminants that could degrade the performance of the LV30 module. The surface through which scanning occurs must be made of clear material; it is recommended to use cell-cast plastics or optical glass such as PMMA, ADC, or chemically tempered glass. While the LV30 performs well under ambient light, exposure to high-frequency pulsed light can negatively impact its performance. The illumination LED in the LV30 is bright but designed to be safe under normal usage conditions. Nevertheless, users should avoid direct eye exposure to the beam. The LV30's physical interface includes a 12-pin FPC connector, which allows the Barcode 3 Click to connect to the host MCU using a 12-wire 0.5mm pitch FPC cable. This setup supports communication via the UART interface (the TX and RX pins of the mikroBUS™ socket) or the USB interface. Since the LV30 operates at 3.3V, while using the USB interface, the necessary power supply is provided through an additional

low-dropout (LDO) regulator, the TLV700, which converts the USB voltage level to the required 3.3V for the LV30. The Barcode 3 Click also features several additional components to enhance its functionality. An onboard buzzer provides audible feedback to the user, indicating power-on and successful read statuses. A blue READ OK LED indicator signals a successful barcode read. The READ button, when pressed and released, activates scanning until a barcode is decoded or the decode session timeout expires. This function can also be achieved through the TRG pin on the mikroBUS™ socket. Additionally, the board includes a RESET button for resetting the LV30, which can also be operated via the RST pin on the mikroBUS™ socket. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Barcode 3 Click hardware overview image

Features overview

Development board

UNI Clicker is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It supports a wide range of microcontrollers, such as different ARM, PIC32, dsPIC, PIC, and AVR from various vendors like Microchip, ST, NXP, and TI (regardless of their number of pins), four mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a debugger/programmer connector, and two 26-pin headers for interfacing with external electronics. Thanks to innovative manufacturing technology, it allows you to build

gadgets with unique functionalities and features quickly. Each part of the UNI Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the UNI Clicker programming method, using a third-party programmer or CODEGRIP/mikroProg connected to onboard JTAG/SWD header, the UNI Clicker board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Type-C (USB-C) connector, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or using a Li-Po/Li

Ion battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board (plus USB HOST/DEVICE), including the well-established mikroBUS™ socket, a standardized socket for the MCU card (SiBRAIN standard), and several user-configurable buttons and LED indicators. UNI Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI clicker double image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M7

MCU Memory (KB)

512

Silicon Vendor

STMicroelectronics

Pin count

100

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PA1
RST
ID COMM
PB2
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Scan Trigger
PB1
PWM
NC
NC
INT
UART TX
PA2
TX
UART RX
PA3
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Barcode 3 Click Schematic schematic

Step by step

Project assembly

UNI Clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI Clicker as your development board.

UNI Clicker front image hardware assembly
Thermo 28 Click front image hardware assembly
SiBRAIN for STM32F745VG front image hardware assembly
Prog-cut hardware assembly
UNI Clicker MB 1 - upright/with-background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Barcode 3 Click driver.

Key functions:

  • barcode3_generic_read - This function reads a desired number of data bytes by using UART serial interface.

  • barcode3_start_scanning - This function starts the barcode scanning by setting the TRG pin to low logic state.

  • barcode3_stop_scanning - This function stops the barcode scanning by setting the TRG pin to high logic state.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Barcode 3 Click Example.
 *
 * # Description
 * This example demonstrates the use of the Barcode 3 click board by scanning
 * and displaying the content of a barcode or QR Code.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver, stops scanning and resets the barcode device.
 *
 * ## Application Task
 * Triggers scanning and waits up to 3 seconds for the barcode to be detected.
 * If a barcode or QR Code is detected, it displays its content on the USB UART.
 *
 * ## Additional Function
 * - static void barcode3_clear_app_buf ( void )
 * - static void barcode3_log_app_buf ( void )
 * - static err_t barcode3_process ( barcode3_t *ctx )
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "barcode3.h"

// Application buffer size
#define APP_BUFFER_SIZE             500
#define PROCESS_BUFFER_SIZE         200

static barcode3_t barcode3;
static log_t logger;

static uint8_t app_buf[ APP_BUFFER_SIZE ] = { 0 };
static int32_t app_buf_len = 0;

/**
 * @brief Barcode 3 clearing application buffer.
 * @details This function clears memory of application buffer and reset its length.
 * @note None.
 */
static void barcode3_clear_app_buf ( void );

/**
 * @brief Barcode 3 log application buffer.
 * @details This function logs data from application buffer to USB UART.
 * @note None.
 */
static void barcode3_log_app_buf ( void );

/**
 * @brief Barcode 3 data reading function.
 * @details This function reads data from device and concatenates data to application buffer. 
 * @param[in] ctx : Click context object.
 * See #barcode3_t object definition for detailed explanation.
 * @return @li @c  0 - Read some data.
 *         @li @c -1 - Nothing is read.
 * See #err_t definition for detailed explanation.
 * @note None.
 */
static err_t barcode3_process ( barcode3_t *ctx );

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    barcode3_cfg_t barcode3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    barcode3_cfg_setup( &barcode3_cfg );
    BARCODE3_MAP_MIKROBUS( barcode3_cfg, MIKROBUS_1 );
    if ( UART_ERROR == barcode3_init( &barcode3, &barcode3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    barcode3_stop_scanning ( &barcode3 );
    barcode3_reset_device ( &barcode3 );
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    uint16_t timeout = 0;
    log_printf( &logger, "\r\n------- SCAN START ------\r\n" );
    barcode3_start_scanning ( &barcode3 );
    while ( ++timeout < 3000 )
    {
        if ( BARCODE3_OK == barcode3_process( &barcode3 ) )
        {
            barcode3_log_app_buf( );
            barcode3_clear_app_buf( );
            Delay_10ms ( );
            while ( BARCODE3_OK == barcode3_process( &barcode3 ) )
            {
                barcode3_log_app_buf( );
                barcode3_clear_app_buf( );
                Delay_10ms ( );
            }
            break;
        }
        Delay_1ms ( );
    }
    log_printf( &logger, "------- SCAN STOP -------\r\n" );
    barcode3_stop_scanning ( &barcode3 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

static void barcode3_clear_app_buf ( void ) 
{
    memset( app_buf, 0, app_buf_len );
    app_buf_len = 0;
}

static void barcode3_log_app_buf ( void )
{
    for ( int32_t buf_cnt = 0; buf_cnt < app_buf_len; buf_cnt++ )
    {
        log_printf( &logger, "%c", app_buf[ buf_cnt ] );
    }
}

static err_t barcode3_process ( barcode3_t *ctx ) 
{
    uint8_t rx_buf[ PROCESS_BUFFER_SIZE ] = { 0 };
    int32_t overflow_bytes = 0;
    int32_t rx_cnt = 0;
    int32_t rx_size = barcode3_generic_read( ctx, rx_buf, PROCESS_BUFFER_SIZE );
    if ( ( rx_size > 0 ) && ( rx_size <= APP_BUFFER_SIZE ) ) 
    {
        if ( ( app_buf_len + rx_size ) > APP_BUFFER_SIZE ) 
        {
            overflow_bytes = ( app_buf_len + rx_size ) - APP_BUFFER_SIZE;
            app_buf_len = APP_BUFFER_SIZE - rx_size;
            memmove ( app_buf, &app_buf[ overflow_bytes ], app_buf_len );
            memset ( &app_buf[ app_buf_len ], 0, overflow_bytes );
        }
        for ( rx_cnt = 0; rx_cnt < rx_size; rx_cnt++ ) 
        {
            if ( rx_buf[ rx_cnt ] ) 
            {
                app_buf[ app_buf_len++ ] = rx_buf[ rx_cnt ];
            }
        }
        return BARCODE3_OK;
    }
    return BARCODE3_ERROR;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.