Intermediate
30 min

Master the art of precise timing with CS2200-CP and PIC32MZ2048EFH100

Clock frequency synthesizer

Clock Gen 4 Click with Flip&Click PIC32MZ

Published May 27, 2023

Click board™

Clock Gen 4 Click

Dev Board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Integrate an advanced clock generator into your solution and witness the transformative impact on timing control

A

A

Hardware Overview

How does it work?

Clock Gen 4 Click is based on the CS2200-CP, an analog PLL architecture comprised of a Delta-Sigma fractional-N frequency synthesizer from Cirrus Logic. The Delta-Sigma fractional-N frequency synthesizer has a high resolution for Input/Output clock ratios, low phase noise, a wide range of output frequencies, and the ability to tune to a new frequency quickly. This synthesizer multiplies the timing reference clock by the value of N to generate a stable and low-jitter PLL clock on the connector labeled PLL Clock. This Click board™ also has another connector marked as AUX Clock that outputs a buffered version of one of the input/output clocks or a status signal, depending on register configuration. The analog PLL-based frequency synthesizer uses a low-jitter timing reference clock

as a time and phase reference for the internal voltage-controlled oscillator (VCO). The phase comparator compares the fractional-N divided clock with the original timing reference and generates a control signal filtered by the internal loop filter to generate the VCO’s control voltage that sets its output frequency. The Delta-Sigma modulator modulates the loop integer divide ratio to get the desired fractional ratio between the reference clock and the VCO output. This allows fast lock times for various output frequencies without external filter components. Clock Gen 4 Click provides the possibility of using both I2C and SPI interfaces with a maximum frequency of 100kHz for I2C and 6MHz for SPI communication. The selection can be performed by positioning SMD jumpers labeled

COMM SEL to an appropriate position. Note that all the jumpers must be placed on the same side, or the Click board™ may become unresponsive. While the I2C interface is selected, the CS2200-CP allows the choice of the least significant bit (LSB) of its I2C slave address. This can be done by using the SMD jumper labeled as ADDR SEL. This Click board™ can only be operated with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

clock-gen-4-click-hardware-overview

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
RA0
CS
SPI Clock
RG6
SCK
SPI Data OUT
RC4
MISO
SPI Data IN
RB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RA2
SCL
I2C Data
RA3
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

Clock Gen 4 Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Clock Gen 4 Click driver.

Key functions:

  • void clockgen4_dev_ctl ( uint8_t dev_ctl ); - Function is used to write to Device Control register in order to apply settings.
  • void clockgen4_dev_cfg ( uint8_t dev_cfg ); - Function is used to write to Device Configuration 1 register in order to apply settings.
  • uint32_t clockgen4_set_ratio ( float ratio ); - Function is used to set the ratio between the output signal and the input clock.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief ClockGen4 Click example
 *
 * # Description
 * This example demonstrates the use of Clock Gen 4 click which is based on CS2200-CP for changing the channel clock. The CS2200-CP is an extremely 
 * versatile system clocking device that utilizes a programmable phase lock loop. The CS2200-CP is based on an analog PLL architecture and this 
 * architecture allows for frequency synthesis and clock generation from a stable reference clock. The CS2200-CP supports both I²C and SPI for full software control.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes I2C and SPI, sets CS pin as output and starts to write log, applies default settings and adjusted ratio to obtain a frequency.
 *
 * ## Application Task
 * Clock Gen 4 click is used in this example to generate and change the clock on the output channel.
 *
 * @author Jelena Milosavljevic
 *
 */

#include "board.h"
#include "log.h"
#include "clockgen4.h"

static clockgen4_t clockgen4;
static log_t logger;

uint8_t com_itfc = 0;

void application_init ( void ){
    log_cfg_t log_cfg;                     /**< Logger config object. */
    clockgen4_cfg_t clockgen4_cfg;         /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );
    
    Delay_ms ( 100 );
    log_printf( &logger, "---------------------" );
    log_printf( &logger, "  Clock Gen 4 Click  " );
    log_printf( &logger, "---------------------" );
    
    // Click initialization.
    clockgen4_cfg_setup( &clockgen4_cfg );
    CLOCKGEN4_MAP_MIKROBUS( clockgen4_cfg, MIKROBUS_1 );
    err_t init_flag  = clockgen4_init( &clockgen4, &clockgen4_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    clockgen4_default_cfg ( &clockgen4 );
    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

void application_task ( void ){
    clockgen4_dev_ctl ( &clockgen4, CLOCKGEN4_AUX_OUT_DIS | CLOCKGEN4_CLK_OUT_EN );
    log_printf( &logger, "  PLL Clock          \r\n" );
    log_printf( &logger, "  output enabled!    \r\n" );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );
    
    clockgen4_dev_ctl ( &clockgen4, CLOCKGEN4_AUX_OUT_EN | CLOCKGEN4_CLK_OUT_DIS );
    log_printf( &logger, "  AUX Clock          \r\n" );
    log_printf( &logger, "  output enabled!    \r\n" );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.