Intermediate
30 min

Make BLDC motor drive as simple as possible with DRV10866 and PIC32MZ2048EFH100

Unleash unbridled performance

Brushless 24 Click with Flip&Click PIC32MZ

Published Jul 28, 2023

Click board™

Brushless 24 Click

Dev Board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Harness AI-powered precision with our next-gen brushless motor control solution

A

A

Hardware Overview

How does it work?

Brushless 24 Click is based on the DRV10866, a fully integrated three-phase BLDC motor driver from Texas Instruments. The DRV10866 motor driver comes with integrated power MOSFETs with current drive capability up to 800mA peak (based on populated 3.9k resistor), specifically designed for low-noise energy-saving fan motor drive applications connected to the terminals labeled as U, V, W, and COM. It provides PWM/enable control interface (PWM pin of the mikroBUS™ socket), wide operating voltage range, robust on-chip protection features, low RDSON, and efficient switching algorithms to ensure excellent thermal performance and high drive capability. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for

a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. In addition, the DRV10866 has a frequency generator pin (FG) that outputs a 50% duty cycle of PWM waveform in the normal operation condition. The FG represents the motor speed and phase information, detectable through an interrupt pin of the mikroBUS™ socket and a blue LED indicator marked as FG. During the Start-Up sequence, the FG output will stay at high impedance until the motor speed reaches a certain level and BEMF is detected, while during lock protection conditions, the FG will remain high until the motor restarts and the Start-Up process is completed. Apart from this function, the

DRV10866 can also output either full FG or half of the FG to indicate motor status with open-drain output through the FGS SEL selection jumper. When FGS SEL is placed in a VCC position, the FG output frequency is half that when the jumper is set to a GND position. The DRV10866 has multiple built-in protection blocks, including UVLO, overcurrent protection, lock protection, and thermal shutdown protection. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. This Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Brushless 24 Click hardware overview image

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

You complete me!

Accessories

Brushless DC (BLDC) Motor with a Hall sensor represents a high-performance motor from the 42BLF motor series. This motor, wired in a star configuration, boasts a Hall Effect angle of 120°, ensuring precise and reliable performance. With a compact motor length of 47mm and a lightweight design tipping the scales at just 0.29kg, this BLDC motor is engineered to meet your needs. Operating flawlessly at a voltage rating of 24VDC and a speed range of 4000 ± 10% RPM, this motor offers consistent and dependable power. It excels in a normal operational temperature range from -20 to +50°C, maintaining efficiency with a rated current of 1.9A. Also, this product seamlessly integrates with all Brushless Click boards™ and those that require BLDC motors with Hall sensors.

Brushless 24 Click accessories image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Signal
RC14
PWM
Motor Speed Indicator
RD9
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Brushless 24 Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Brushless 24 Click driver.

Key functions:

  • brushless24_set_duty_cycle - Brushless 24 sets PWM duty cycle

  • brushless24_pwm_start - Brushless 24 start PWM module

  • brushless24_get_int_state - Brushless 24 get INT pin state

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Brushless 24 Click example
 *
 * # Description
 * This application is a schowcase of controlling speed of brushless motor using Brushless 24 Click.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of LOG, PWM module and additional pins.
 *
 * ## Application Task
 * In a span of second changes duty cycle from 0 to 100% which is changing speed of the motor.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "brushless24.h"

static brushless24_t brushless24;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless24_cfg_t brushless24_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless24_cfg_setup( &brushless24_cfg );
    BRUSHLESS24_MAP_MIKROBUS( brushless24_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless24_init( &brushless24, &brushless24_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( BRUSHLESS24_ERROR == brushless24_default_cfg ( &brushless24 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;
    
    brushless24_set_duty_cycle ( &brushless24, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    
    Delay_ms( 1000 );
    
    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

void main ( void )  
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.