Intermediate
30 min

Achieve data storage and access speeds previously thought impossible with the help of MR10Q010 and PIC32MZ2048EFM100

Next-Gen memory marvel

MRAM 2 Click with Curiosity PIC32 MZ EF

Published Sep 13, 2023

Click board™

MRAM 2 Click

Dev. board

Curiosity PIC32 MZ EF

Compiler

NECTO Studio

MCU

PIC32MZ2048EFM100

Significantly improve your solution by storing more data, enabling faster data access, and consuming less energy than existing electronic memory

A

A

Hardware Overview

How does it work?

MRAM 2 Click is based on the MR10Q010, 1Mb Quad Output High-Speed Serial SPI MRAM memory solution from Everspin Technologies. The MR10Q010 is the ideal memory solution for applications that must quickly store and retrieve data and programs using a small number of pins, low power, and the space-saving 16-pin SOIC package. The four I/O’s in Quad SPI mode allow fast reads and writes, making it an attractive alternative to conventional parallel data bus interfaces in next-generation RAID controllers, server system logs, storage device buffers, and embedded system data and program memory. This Click board™ includes an LDO regulator BH18PB1WHFVCT from Rohm Semiconductor to provide the 1.8 V supply voltage. The LDO cuts power consumption by lowering its current

consumption to approximately 2μA when the application operates in the standby state. During normal-current operation, it will automatically switch to high-speed operating mode. The LDO regulator output provides a needed reference voltage for one side of the TXB0106, a 6-bit bidirectional level shifting and voltage translator with automatic direction sensing from Texas Instruments. The reference voltage for the other side of the level shifter is taken from the 3.3V pin from the mikroBUS™. The MRAM 2 Click communicates with MCU using the standard SPI serial interface that supports SPI Mode 0 and 3 and operates at clock rates up to 104 MHz. It also supports modes like Quad Peripheral Interface (QPI) and Quad SPI organized as 131.072 words of 8 bits. Both read and write operations can occur

randomly in memory without delay between writes. The MR10Q010 uses a Write Protect signal routed to the RST pin on the mikroBUS™ to prevent write operations to the Status Register, while the HOLD signal routed to the INT pin on the mikroBUS™ is used to interrupt a memory operation for another task. When HOLD is low, the current operation is suspended. This Click Board™ is designed to be operated only with a 3.3V logic level. A proper logic voltage level conversion should be performed before the Click board™ is used with MCUs with different logic levels. More information about the MR10Q010 can be found in the attached datasheet. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

MRAM 2 Click top side image
MRAM 2 Click bottom side image

Features overview

Development board

Curiosity PIC32 MZ EF development board is a fully integrated 32-bit development platform featuring the high-performance PIC32MZ EF Series (PIC32MZ2048EFM) that has a 2MB Flash, 512KB RAM, integrated FPU, Crypto accelerator, and excellent connectivity options. It includes an integrated programmer and debugger, requiring no additional hardware. Users can expand

functionality through MIKROE mikroBUS™ Click™ adapter boards, add Ethernet connectivity with the Microchip PHY daughter board, add WiFi connectivity capability using the Microchip expansions boards, and add audio input and output capability with Microchip audio daughter boards. These boards are fully integrated into PIC32’s powerful software framework, MPLAB Harmony,

which provides a flexible and modular interface to application development a rich set of inter-operable software stacks (TCP-IP, USB), and easy-to-use features. The Curiosity PIC32 MZ EF development board offers expansion capabilities making it an excellent choice for a rapid prototyping board in Connectivity, IOT, and general-purpose applications.

Curiosity PIC32MZ EF double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
QUAD SPI IO2 / Write Protect
RA9
RST
SPI Chip Select
RPD4
CS
SPI Clock
RPD1
SCK
QUAD SPI IO1 / SPI Data OUT
RPD14
MISO
QUAD SPI I0 / SPI Data IN
RPD3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
QUAD SPI IO3 / Data Transfer Pause
RF13
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

MRAM 2 Click Schematic schematic

Step by step

Project assembly

Curiosity PIC32MZ EF front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity PIC32 MZ EF as your development board.

Curiosity PIC32MZ EF front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
Board mapper by product7 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Curiosity PIC32 MZ EF MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Software Support

Library Description

This library contains API for MRAM 2 Click driver.

Key functions:

  • mram2_wren - Write Enable function

  • mram2_read - Read Data Bytes function

  • mram2_write - Write Data Bytes function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Mram2 Click example
 * 
 * # Description
 * This example demonstrates the use of MRAM 2 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver, sets the write protect and disables the hold signal.
 * 
 * ## Application Task  
 * Writes "MikroE" into the first 6 memory locations, and then reads it back 
 * and displays it to the USB UART approximately every 5 seconds.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "mram2.h"

// ------------------------------------------------------------------ VARIABLES

static mram2_t mram2;
static log_t logger;

char val_in[ 7 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 0 };
char val_out[ 7 ] = { 0 };

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    mram2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mram2_cfg_setup( &cfg );
    MRAM2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mram2_init( &mram2, &cfg );

    log_printf( &logger, "------------------- \r\n" );
    log_printf( &logger, "   MRAM 2 Click     \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    mram2_write_protect( &mram2, MRAM2_WP_ENABLE );
    mram2_hold( &mram2, MRAM2_HLD_DISABLE );
    log_printf( &logger, "   Initialized      \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    Delay_ms ( 100 );
}

void application_task ( void )
{
    mram2_wren( &mram2 );
    log_printf( &logger, "Write enabled!\r\n" );
    Delay_ms ( 100 );
    log_printf( &logger, "Writing \"%s\" to memory...\r\n", val_in );
    mram2_write( &mram2, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    mram2_wrdi ( &mram2 );
    log_printf( &logger, "Write disabled!\r\n" );
    Delay_ms ( 100 );
    mram2_read ( &mram2, 0x000000, &val_out[ 0 ], 6 );
    log_printf( &logger, "Read data : %s\r\n", val_out );
    
    log_printf( &logger, "-------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.