Beginner
10 min

Control the flow of power to connected load with BTS3035EJXUMA1 and PIC18F57Q43

35mΩ single channel smart low-side power switch

SolidSwitch 8 Click with Curiosity Nano with PIC18F57Q43

Published Nov 21, 2024

Click board™

SolidSwitch 8 Click

Dev Board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Manage loads reliably with advanced protection and diagnostics, ideal for replacing relays and fuses in automotive and industrial systems

A

A

Hardware Overview

How does it work?

SolidSwitch 8 Click is based on the BTS3035EJXUMA1, a single-channel smart low-side power switch from Infineon. This 35mΩ device uses an advanced N-channel vertical power MOSFET design, which is monolithically integrated, ensuring high reliability and compactness. Engineered with automotive-grade quality, the BTS3035EJXUMA1 is ideal for robust 12V automotive applications. Still, it can manage a versatile range of load types - including resistive, inductive, and capacitive loads - with a maximum voltage range from 6V to 18V and load currents up to 5A. This Click board™ offers a practical solution for controlling loads with varying characteristics and can replace traditional electromechanical relays, fuses, and discrete circuits in numerous applications. Its design enables reliable switching and precise load management, making it suitable for high-efficiency automotive and industrial

systems. The BTS3035EJXUMA1 has comprehensive protection features, enhancing its reliability across various applications. These include an overtemperature shutdown with automatic restart, active clamp overvoltage protection, and current limitation, all safeguarding the device under demanding operating conditions. Additionally, it has a low output leakage current when in the OFF state, electrostatic discharge (ESD) protection, and full AEC-Q100 qualification, ensuring resilience in automotive environments. SolidSwitch 8 Click establishes its connection with the host MCU through specific pins on the mikroBUS™ socket, which controls the operation of the onboard BTS3035EJXUMA1 IC. The IN pin is the TTL logic control signal, where a HIGH logic level enables the smart power switch to manage its load. Additionally, the STS pin functions as an open-drain feedback status output, providing real-

time monitoring and alerting the MCU in case of detected anomalies, such as an overtemperature condition. For immediate visual feedback, the onboard ERR red LED indicates any detected operational anomaly controlled through the ERR pin on the mikroBUS™ socket. This LED activation provides an accessible visual alert for users, enhancing diagnostics and safety by signaling issues directly on the board. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VIO SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

SolidSwitch 8 Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Error LED Control
PA7
RST
ID COMM
PD4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Input Control
PB0
PWM
Status Feedback
PA6
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

SolidSwitch 8 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PICXXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for SolidSwitch 8 Click driver.

Key functions:

  • solidswitch8_set_err_pin - This function sets the err pin state to the selected level of SolidSwitch 8 Click.

  • solidswitch8_set_in_pin - This function sets the in pin state to the selected level of SolidSwitch 8 Click.

  • solidswitch8_get_sts_pin - This function reads the state of the status pin of SolidSwitch 8 Click.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief SolidSwitch 8 Click Example.
 *
 * # Description
 * This example demonstrates the use of SolidSwitch 8 Click board by 
 * switching state of the switch.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver, performs the Click default configuration.
 *
 * ## Application Task
 * Switching state of the output every 5 seconds, 
 * and monitoring the status of the device.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "solidswitch8.h"

static solidswitch8_t solidswitch8;   /**< SolidSwitch 8 Click driver object. */
static log_t logger;    /**< Logger object. */

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    solidswitch8_cfg_t solidswitch8_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    solidswitch8_cfg_setup( &solidswitch8_cfg );
    SOLIDSWITCH8_MAP_MIKROBUS( solidswitch8_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == solidswitch8_init( &solidswitch8, &solidswitch8_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    solidswitch8_default_cfg ( &solidswitch8 );
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    if ( SOLIDSWITCH8_PIN_STATE_LOW == solidswitch8_get_sts_pin( &solidswitch8 ) )
    {
        solidswitch8_set_err_pin( &solidswitch8, SOLIDSWITCH8_PIN_STATE_HIGH );
        log_error( &logger, " Detected over temperature condition." );
        for ( ; ; );
    }

    log_printf( &logger, " Switch state closed. \r\n" );
    solidswitch8_set_in_pin( &solidswitch8, SOLIDSWITCH8_PIN_STATE_HIGH );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " Switch state open. \r\n" );
    solidswitch8_set_in_pin( &solidswitch8, SOLIDSWITCH8_PIN_STATE_LOW );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.