Intermediate
20 min

Provide precise haptic feedback for a wide array of electronic applications with DA7280 and PIC18F57Q43

Capable of operating both linear resonant actuator (LRA) and eccentric rotating mass (ERM) actuators

Haptic 4 Click with Curiosity Nano with PIC18F57Q43

Published Mar 18, 2024

Click board™

Haptic 4 Click

Development board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

LRA/ERM haptic driver with multiple input triggers, integrated waveform memory and wideband support

A

A

Hardware Overview

How does it work?

Haptic 4 Click is based on the DA7280, a haptic driver designed to drive linear resonant actuator (LRA) and eccentric rotating mass (ERM) actuators from Renesas. The DA7280 stands out with its automatic closed-loop LRA resonant frequency tracking feature, ensuring consistent performance across various conditions, including production tolerances and mechanical coupling effects. Depending on the register configuration, its capability to drive both LRA and ERM actuators originates from its differential output drive architecture and continuous motion sensing, which foster calibration-free operation and reduce software complexity. The DA7280's architecture is optimized for wideband operation, unlocking the full potential of the latest wideband and multidirectional LRAs. This feature makes it ideal for many applications, from wearables and electronic

peripherals to automotive, industrial settings, and AR/VR controllers. The DA7280's unique ability to control the drive level across loads connected to the OUT terminal and to sense actuator movement via a current-regulated loop and high-frequency PWM modulation enhances its utility. With support for six independent haptic sequences triggered via the mikroBUS™ pins (GP0, GP1, and GP2) without host interaction and options for external control via I2C or PWM signal, the DA7280 ensures versatile haptic feedback configurations. Using the I2C interface, this Click board™ can communicate with the host MCU supporting frequency up to 1MHz. The DA7280 is also capable of closed-loop actuator monitoring while driving to enable calibration-free playback, frequency tracking (LRA only), Active Acceleration, Rapid Stop, and actuator diagnostics available on the IRQ pin of the mikroBUS™ socket.

Continuous resonant frequency tracking can be enabled while driving an LRA to track the mechanical resonance of the actuator through closed-loop control. This feature maximizes electrical to mechanical energy conversion efficiency for narrowband actuators and is especially useful in applications such as operating system notifications and alarms. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Haptic 4 Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Vibration ERM Motor 9K RPM 3V (VC1026B002F - old MPN C1026B002F) represents a compact-size Eccentric Rotating Mass (ERM) motor designed by Vybronics. This type of motor contains a small eccentric weight on its rotor, so while rotating, it also produces a vibration effect often used for haptic feedback on many small handheld devices. Due to its circular shape with a diameter of 10mm, the VC1026B002F is often referred to as a coin motor. The main characteristics of this vibration motor are its supply voltage, in this case, 3VDC, maximum rated current of 85mA, and the rated speed of 9000RPM, which produces the highest G force/vibration energy of 0.80GRMS. It can also be used with self-adhesive tape to mount it on your PCB or the inner wall of your product's housing.

Haptic 4 Click accessories 1 image

Used MCU Pins

mikroBUS™ mapper

General-Purpose I/O 1
PA0
AN
General-Purpose I/O 2
PA7
RST
ID COMM
PD4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
General-Purpose I/O 0 / PWM Signal
PB0
PWM
Interrupt
PA6
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB1
SCL
I2C Data
PB2
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Haptic 4 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PICXXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for Haptic 4 Click driver.

Key functions:

  • haptic4_check_communication - This function checks the communication by reading and verifying the chip ID

  • haptic4_set_vibration_level - This function sets the motor vibration level

  • haptic4_get_vibration_level - This function reads the motor vibration level

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Haptic 4 Click example
 *
 * # Description
 * This example demonstrates the use of Haptic 4 click board by controlling
 * the attached motor vibration level.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Changes the motor vibration level every 2 seconds between MAX and MIN, 
 * and displays the currently set level on the USB UART.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "haptic4.h"

static haptic4_t haptic4;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    haptic4_cfg_t haptic4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    haptic4_cfg_setup( &haptic4_cfg );
    HAPTIC4_MAP_MIKROBUS( haptic4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == haptic4_init( &haptic4, &haptic4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( HAPTIC4_ERROR == haptic4_default_cfg ( &haptic4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    float vibration_level;
    if ( HAPTIC4_OK == haptic4_set_vibration_level ( &haptic4, HAPTIC4_VIBRATION_LEVEL_MAX ) )
    {
        if ( HAPTIC4_OK == haptic4_get_vibration_level ( &haptic4, &vibration_level ) )
        {
            log_printf( &logger, " Vibration level: %.3f \r\n\n", vibration_level );
        }
    }
    Delay_ms ( 2000 );
    
    if ( HAPTIC4_OK == haptic4_set_vibration_level ( &haptic4, HAPTIC4_VIBRATION_LEVEL_MIN ) )
    {
        if ( HAPTIC4_OK == haptic4_get_vibration_level ( &haptic4, &vibration_level ) )
        {
            log_printf( &logger, " Vibration level: %.3f \r\n\n", vibration_level );
        }
    }
    Delay_ms ( 2000 );
}

int main ( void ) 
{
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources