Intermediate
30 min

Elevate your cooling experience with TC654 and PIC18F57Q43

Seamlessly adjust fan speeds for a relaxing atmosphere

Fan 5 Click with Curiosity Nano with PIC18F57Q43

Published Feb 13, 2024

Click board™

Fan 5 Click

Dev. board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Take control of the perfect airflow with our PWM-mode fan speed controller!

A

A

Hardware Overview

How does it work?

Fan 5 Click is based on the TC654, a fan speed controller from Microchip that allows you to control and monitor the speed of two DC brushless fans. The TC654 is based on the FanSense™ technology, which protects your application against fan failure and eliminates the need for 3-wire fans. With the TC654, the fan speed can be controlled by its input voltage or the serial interface, allowing for high flexibility. The input voltage of the TC654 represents temperature, typically provided by a chosen internal or external thermistor (selected using an NTC SEL jumper). The TC654 controls fan speed according to the system temperature by pulse-width modulating the voltage across the fan. This method reduces the fan'sfan's acoustic noise and extends the fan'sfan's working life. An external N-channel MOSFET, one per channel, controls the

fans. Modulating the voltage applied to the gate of the MOSFETs also modulates the voltage applied to the fan. The PWM output can be adjusted between 30% and 100%, based on the TC654's input voltage, or programmed, as mentioned, via the I2C interface to allow fan speed control without needing an external thermistor. The standard I2C 2-Wire interface reads data and configures settings with a maximum frequency of 100kHz. The TC654 also measures and monitors fan revolutions per minute (RPM), representing a measure of its health. As a fan'sfan's bearings wear out, the fan slows down and eventually stops (locked rotor). The TC654 can detect open, shorted, unconnected, and locked rotor fan conditions by monitoring the fan'sfan's RPM level. Apart from the availability of this information on the FLT pin of the mikroBUS™ socket, this condition can also be

visually detected through the red LED marked with FAULT. The fan RPM data and threshold registers are available over the I2C interface, allowing complete system control. In addition to the two terminals for fan connections, there is another terminal, VFAN, for an external 12V power supply for FAN1. FAN2 uses the necessary supply from the 5V mikroBUS™ power rail. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V MCUs can use the communication lines correctly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Fan 5 Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Fault Indicator
PA6
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB2
SCL
I2C Data
PB1
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Fan 5 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PICXXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Fan 5 Click driver.

Key functions:

  • fan5_get_rpm1 - Fan 5 get speed of FAN1

  • fan5_set_duty_cycle - Fan 5 set duty cycle

  • fan5_turn_on_fans - Fan 5 turn on fans

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Fan 5 Click example
 *
 * # Description
 * This example demonstrates the use of FAN 5 click board by controlling and 
 * regulating the fan motors speed.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver, performs the click default configuration, reads 
 * manufacturer id and sets configuration in correspondence to user-selected mode.
 *
 * ## Application Task
 * If Fan control is selected example will monitor FAN 1 speed and if the speed 
 * falls below 500 RPM for longer then 2.4 seconds fan output will be disabled.
 * In other case, example is showcasing speed control by changing duty cycle and 
 * monitoring fan speed.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "fan5.h"

#define FAN_CONTROL_MODE

static fan5_t fan5;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    fan5_cfg_t fan5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    fan5_cfg_setup( &fan5_cfg );
    FAN5_MAP_MIKROBUS( fan5_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == fan5_init( &fan5, &fan5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( FAN5_ERROR == fan5_default_cfg ( &fan5 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    fan5_turn_on_fans( &fan5 );
    uint8_t id = 0;
    fan5_get_mfr_id( &fan5, &id );
    log_printf( &logger, " Manufacturer ID: 0x%X \r\n", ( uint16_t ) id );
    
#if defined FAN_CONTROL_MODE
    fan5_set_duty_cycle( &fan5, FAN5_100_PER_DUTY );
    fan5_set_fan_fault1( &fan5, 500 );
#else
    fan5_set_duty_cycle( &fan5, FAN5_30_PER_DUTY );
    fan5_set_fan_fault1( &fan5, 0 );
#endif
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
#if defined FAN_CONTROL_MODE
    uint16_t speed = 0;
    uint8_t flag_data = 0;
    
    fan5_get_rpm1( &fan5, &speed);
    log_printf( &logger, " SPEED: %d RPM \r\n", speed );
    
    if ( FAN5_FAULT == fan5_get_fault_state( &fan5 ) )
    {
        fan5_get_status_flags ( &fan5, &flag_data );
        log_printf( &logger, " FLAG: %d \r\n", flag_data );
        if ( FAN5_F1F_FLAG & flag_data )
        {
            log_printf( &logger, " FAN SPEED DROPED !!! \r\n" );
            log_printf( &logger, " OUTPUT IS DISABLED \r\n" );
            fan5_turn_off_fans( &fan5 );
            for( ; ; );
        }
    }
    
    Delay_ms( 2000 );
#else
    uint16_t speed;
    uint8_t duty_value;
    
    for ( duty_value = FAN5_30_PER_DUTY; duty_value <= FAN5_100_PER_DUTY; duty_value++ )
    {
        fan5_set_duty_cycle( &fan5, duty_value );
        log_printf( &logger, " Duty value: %d \r\n", ( uint16_t ) duty_value );
        Delay_ms( 5000 );
        fan5_get_rpm1( &fan5, &speed);
        log_printf( &logger, " SPEED: %d RPM \r\n", speed );
        Delay_ms( 500 );
    }
#endif
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.