Beginner
10 min

Add a knob and visual feedback to electronic projects with TLC5925 and PIC18F57Q43

Create visual effects and indicators in various applications

Rotary W 2 Click with Curiosity Nano with PIC18F57Q43

Published Feb 13, 2024

Click board™

Rotary W 2 Click

Dev. board

Curiosity Nano with PIC18F57Q43

Compiler

NECTO Studio

MCU

PIC18F57Q43

Enhance electronic designs by providing a precision input knob with visual feedback through a ring of 16 white LEDs

A

A

Hardware Overview

How does it work?

Rotary W 2 Click is based on the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. The EC12D1564402 incremental rotary encoder is surrounded by a ring of 16 green LEDs where a single rotation is divided into 15 discrete steps (in contrast to a potentiometer, a rotary encoder can be spun around continuously). The driver can control each LED individually, allowing various lighting effects to be programmed. The encoder outputs A and B signals (out of phase to each other) on the two mikroBUS™ lines, alongside the knob

push-button feature, which outputs through the interrupt line. The EC12D1564402 is a 15-pulse incremental rotary encoder with a push button. This encoder has unique mechanical specifications (debouncing time for its internal switches goes down to 2ms), and it can withstand a huge number of switching cycles, up to 30.000. The supporting debouncing circuitry allows contacts to settle before the output is triggered fully. Rotary W 2 Click uses a standard 4-wire SPI serial interface of the TLC5925 LED driver to communicate with the host MCU supporting clock frequency of up to 30MHz. Rotating the encoder, it outputs A and B signals (out of phase to each other) on the two mikroBUS™ lines,

ENA and ENB pins of the mikroBUS™ socket, alongside the push-button contact, which outputs through the SW pin (interrupt line) of the mikroBUS™ socket. Two SN74LVC1T45 single-bit dual-supply bus transceivers from Texas Instruments are used for logic-level translation. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Rotary W 2 Click hardware overview image

Features overview

Development board

PIC18F57Q43 Curiosity Nano evaluation kit is a cutting-edge hardware platform designed to evaluate microcontrollers within the PIC18-Q43 family. Central to its design is the inclusion of the powerful PIC18F57Q43 microcontroller (MCU), offering advanced functionalities and robust performance. Key features of this evaluation kit include a yellow user LED and a responsive

mechanical user switch, providing seamless interaction and testing. The provision for a 32.768kHz crystal footprint ensures precision timing capabilities. With an onboard debugger boasting a green power and status LED, programming and debugging become intuitive and efficient. Further enhancing its utility is the Virtual serial port (CDC) and a debug GPIO channel (DGI

GPIO), offering extensive connectivity options. Powered via USB, this kit boasts an adjustable target voltage feature facilitated by the MIC5353 LDO regulator, ensuring stable operation with an output voltage ranging from 1.8V to 5.1V, with a maximum output current of 500mA, subject to ambient temperature and voltage constraints.

PIC18F57Q43 Curiosity Nano double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

48

RAM (Bytes)

8196

You complete me!

Accessories

Curiosity Nano Base for Click boards is a versatile hardware extension platform created to streamline the integration between Curiosity Nano kits and extension boards, tailored explicitly for the mikroBUS™-standardized Click boards and Xplained Pro extension boards. This innovative base board (shield) offers seamless connectivity and expansion possibilities, simplifying experimentation and development. Key features include USB power compatibility from the Curiosity Nano kit, alongside an alternative external power input option for enhanced flexibility. The onboard Li-Ion/LiPo charger and management circuit ensure smooth operation for battery-powered applications, simplifying usage and management. Moreover, the base incorporates a fixed 3.3V PSU dedicated to target and mikroBUS™ power rails, alongside a fixed 5.0V boost converter catering to 5V power rails of mikroBUS™ sockets, providing stable power delivery for various connected devices.

Curiosity Nano Base for Click boards accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Encoder Output B
PA0
AN
ID SEL
PA7
RST
SPI Select / ID COMM
PD4
CS
SPI Clock
PC6
SCK
SPI Data OUT
PC5
MISO
SPI Data IN
PC4
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Encoder Output A
PB0
PWM
Switch Output
PA6
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Rotary W 2 Click Schematic schematic

Step by step

Project assembly

Curiosity Nano Base for Click boards front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity Nano with PIC18F57Q43 as your development board.

Curiosity Nano Base for Click boards front image hardware assembly
Charger 27 Click front image hardware assembly
PIC18F47Q10 Curiosity Nano front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Curiosity Nano with PICXXX Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
PIC18F57Q43 Curiosity MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Rotary W 2 Click driver.

Key functions:

  • rotaryw2_set_led_pos - Rotary W 2 set LED position function.

  • rotaryw2_set_led_data - Rotary W 2 set LED data function.

  • rotaryw2_get_state_switch - Rotary W 2 get switch state function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Rotary W 2 Click example
 *
 * # Description
 * This library contains the API for the Rotary W 2 Click driver 
 * to control LEDs states and a rotary encoder position readings.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of SPI module and log UART.
 * After the driver init, the app executes a default configuration and turn off all LEDs.
 *
 * ## Application Task
 * This example demonstrates the use of the Rotary W 2 Click board™.
 * The demo example shows the functionality of a rotary encoder used to control LEDs.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "rotaryw2.h"

#define ROTARYW2_ONE_LED          ROTARYW2_SET_LED_DATA_1
#define ROTARYW2_TWO_LED          ROTARYW2_SET_LED_DATA_1  | ROTARYW2_SET_LED_DATA_9
#define ROTARYW2_FOUR_LED         ROTARYW2_SET_LED_DATA_1  | ROTARYW2_SET_LED_DATA_5  | \
                                  ROTARYW2_SET_LED_DATA_9  | ROTARYW2_SET_LED_DATA_13 
#define ROTARYW2_EIGHT_LED        ROTARYW2_SET_LED_DATA_1  | ROTARYW2_SET_LED_DATA_3  | \
                                  ROTARYW2_SET_LED_DATA_5  | ROTARYW2_SET_LED_DATA_7  | \
                                  ROTARYW2_SET_LED_DATA_9  | ROTARYW2_SET_LED_DATA_11 | \
                                  ROTARYW2_SET_LED_DATA_13 | ROTARYW2_SET_LED_DATA_15
#define ROTARYW2_EIGHT_LED_INV    ROTARYW2_SET_LED_DATA_2  | ROTARYW2_SET_LED_DATA_4  | \
                                  ROTARYW2_SET_LED_DATA_6  | ROTARYW2_SET_LED_DATA_8  | \
                                  ROTARYW2_SET_LED_DATA_10 | ROTARYW2_SET_LED_DATA_12 | \
                                  ROTARYW2_SET_LED_DATA_14 | ROTARYW2_SET_LED_DATA_16

static rotaryw2_t rotaryw2;
static log_t logger;

static uint8_t start_rot_status = 0;
static uint8_t led_demo_state = 0;
static uint8_t old_state = 0;
static uint8_t new_state = 1;
static uint8_t old_rot_state = 0;
static uint8_t new_rot_state = 1;
static uint16_t led_data = 1;

/**
 * @brief Rotary W 2 select LED demo data function.
 * @details This function selects one of the four LED demo data 
 * based on the current state of the LED demo.
 * @return LED demo data:
 *         @li @c 0x0001 (ROTARYW2_ONE_LED)   - Turn ON LED[1],
 *         @li @c 0x0101 (ROTARYW2_TWO_LED)   - Turn ON LED[1,9],
 *         @li @c 0x0101 (ROTARYW2_FOUR_LED)  - Turn ON LED[1,5,9,13],
 *         @li @c 0x5555 (ROTARYW2_EIGHT_LED) - Turn ON LED[1,3,5,7,9,11,13,15].
 */
static uint16_t rotaryw2_sel_led_demo_data ( uint8_t led_demo_state );

/**
 * @brief Rotary W 2 switch detection function.
 * @details This function is used for the switch state detection.
 * @return Nothing.
 */
static void rotaryw2_switch_detection ( void );

/**
 * @brief Rotary W 2 encoder mechanism function.
 * @details This function is used to control the state of the LEDs 
 * by detecting the rotation direction of the rotary encoder.
 * @return Nothing.
 */
static void rotaryw2_encoder_mechanism ( void );

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    rotaryw2_cfg_t rotaryw2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rotaryw2_cfg_setup( &rotaryw2_cfg );
    ROTARYW2_MAP_MIKROBUS( rotaryw2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == rotaryw2_init( &rotaryw2, &rotaryw2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( ROTARYW2_ERROR == rotaryw2_default_cfg ( &rotaryw2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    if ( ROTARYW2_OK == rotaryw2_set_led_data( &rotaryw2, led_data ) )
    {
        rotaryw2_switch_detection( );
        rotaryw2_encoder_mechanism( );
    }
}

int main ( void ) 
{
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

static uint16_t rotaryw2_sel_led_demo_data ( uint8_t led_demo_state ) 
{
    switch ( led_demo_state ) 
    {
        case 0: 
        {
            return ROTARYW2_ONE_LED;
            break;
        }
        case 1: 
        {
            return ROTARYW2_TWO_LED;
            break;
        }
        case 2: 
        {
            return ROTARYW2_FOUR_LED;
            break;
        }
        case 3: 
        {
            return ROTARYW2_EIGHT_LED;
            break;
        }
        default: 
        {
            return ROTARYW2_ONE_LED;
            break;
        }
    }
}

static void rotaryw2_switch_detection ( void )
{
    if ( rotaryw2_get_state_switch( &rotaryw2 ) ) 
    {
        new_state = 1;
        if ( (  1 == new_state ) && ( 0 == old_state ) ) 
        {
            old_state = 1;
            led_demo_state = ( led_demo_state + 1 ) % 5;
            if ( 4 == led_demo_state ) 
            {
                for ( uint8_t n_cnt = 0; n_cnt < 10; n_cnt++ )
                {
                    rotaryw2_set_led_data( &rotaryw2, ROTARYW2_EIGHT_LED_INV );
                    Delay_ms( 100 );
                    rotaryw2_set_led_data( &rotaryw2, ROTARYW2_EIGHT_LED );
                    Delay_ms( 100 );
                }
                
                for ( uint8_t led_p = ROTARYW2_SET_LED_POS_1; led_p <= ROTARYW2_SET_LED_POS_16; led_p++ ) 
                {
                    rotaryw2_set_led_pos( &rotaryw2, led_p );
                    Delay_ms( 100 );
                }
                
                led_demo_state = 0;
                led_data = rotaryw2_sel_led_demo_data( led_demo_state );
            }
            else 
            {
                led_data = rotaryw2_sel_led_demo_data( led_demo_state );
            }
        }
    }
    else 
    {
        old_state = 0;
    }
}

static void rotaryw2_encoder_mechanism ( void )
{
    if ( rotaryw2_get_state_ena( &rotaryw2 ) == rotaryw2_get_state_enb( &rotaryw2 ) ) 
    {
        old_rot_state = 0;
        start_rot_status = rotaryw2_get_state_ena( &rotaryw2 ) && rotaryw2_get_state_enb( &rotaryw2 );
    }
    else 
    {
        new_rot_state = 1;
        if ( new_rot_state != old_rot_state ) 
        {
            old_rot_state = 1;
            if ( start_rot_status != rotaryw2_get_state_ena( &rotaryw2 ) ) 
            {
                led_data = ( led_data << 1 ) | ( led_data >> 15 );
            }
            else 
            {
                led_data = ( led_data >> 1 ) | ( led_data << 15 );
            }
        }
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.