Intermediate
30 min

Precisely tracks an object's movement and orientation in three-dimensional space with ICM-42605 and ATmega328P

Mastering motion: Exploring 3D space with 6DOF IMUs

6DOF IMU 18 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

6DOF IMU 18 Click

Dev Board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328P

Empower your projects with 6DOF IMU, the ultimate solution for capturing and controlling motion in three-dimensional space

A

A

Hardware Overview

How does it work?

6DOF IMU 18 Click is based on the ICM-42605, a 6-axis motion tracking device that combines a 3-axis gyroscope and a 3-axis accelerometer from TDK InvenSense. It features a 2K-byte FIFO that can lower the traffic on the selected serial bus interface and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. With its 6-axis integration, the ICM-42605 guarantees optimal motion performance for customers. The IICM-42605 supports an extended operating temperature range, allowing customers to design it into various industrial IoT applications, including navigation and stabilizing industrial machinery and robots. The gyroscope supports eight programmable full-scale range settings from ±15.625dps to ±2000dps, and the accelerometer

supports four programmable full-scale range settings from ±2g to ±16g. Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The ICM-42605 also provides high robustness by supporting 20,000g shock reliability. This Click board™ allows the use of both I2C and SPI interfaces at a maximum frequency of 1MHz for I2C and 24MHz for SPI communication. Selection is made by positioning SMD jumpers marked COMM SEL to the appropriate position. All jumpers must be on the same side, or the Click board™ may become unresponsive. When the I2C interface is selected, the ICM-42605 allows the choice of its I2C slave address, using the ADDR SEL SMD jumper set to an appropriate position

marked 1 or 0. In addition to communication pins, this board also possesses additional interrupt pins, routed to the INT and IT2 pins on the mikroBUS™ socket, to signal MCU that an event, such as specific tap or sample acquisition conditions, has happened. Besides the standard interrupt function, the IT2 pin can also be used as a Frame Synchronization signal for synchronization with an external digital signal. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

6DOF IMU 18 Click top side image
6DOF IMU 18 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

Interrupt/Frame Sync
PC0
AN
NC
NC
RST
SPI Chip Select
PB2
CS
SPI Clock
PB5
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

6DOF IMU 18 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Barometer 13 Click front image hardware assembly
Prog-cut hardware assembly
Arduino UNO Rev3 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for 6DOF IMU 18 Click driver.

Key functions:

  • c6dofimu18_set_reg_bank - 6DOF IMU 18 set register bank function

  • c6dofimu18_get_int1_state - 6DOF IMU 18 read INT1 pin state function

  • c6dofimu18_get_data_from_register - 6DOF IMU 18 read data function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief 6DOF IMU 18 Click example
 *
 * # Description
 * This library contains API for 6DOF IMU 18 Click driver. 
 * The library initializes and defines the I2C and SPI bus drivers to 
 * write and read data from registers, as well as the default 
 * configuration for reading gyroscope and accelerator data, and temperature.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver after that resets the device and 
 * performs default configuration and reads the device id.
 *
 * ## Application Task
 * This example demonstrates the use of the 6DOF IMU 18 Click board by 
 * measuring and displaying acceleration and gyroscope data for X-axis, 
 * Y-axis, and Z-axis as well as temperature in degrees Celsius.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "c6dofimu18.h"

static c6dofimu18_t c6dofimu18;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c6dofimu18_cfg_t c6dofimu18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c6dofimu18_cfg_setup( &c6dofimu18_cfg );
    C6DOFIMU18_MAP_MIKROBUS( c6dofimu18_cfg, MIKROBUS_1 );
    err_t init_flag = c6dofimu18_init( &c6dofimu18, &c6dofimu18_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms( 100 );
    
    uint8_t id = 0;
    c6dofimu18_reg_read( &c6dofimu18, C6DOFIMU18_BANK0_SEL, C6DOFIMU18_REG_WHO_AM_I, &id, 1);
    log_printf( &logger, " Device ID : 0x%.2X \r\n", ( uint16_t ) id );
    if ( C6DOFIMU18_WHO_AM_I_VALUE != id )
    {
        log_error( &logger, " Communication error." );
        for ( ; ; );
    }
    Delay_ms( 100 );
    
    if ( C6DOFIMU18_OK != c6dofimu18_default_cfg ( &c6dofimu18 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    if ( c6dofimu18_get_int1_state( &c6dofimu18) )
    {       
        c6dofimu18_data_t accel_data;
        c6dofimu18_data_t gyro_data;
        float temp_data;
        uint32_t tmst_data;
        
        c6dofimu18_get_data_from_register( &c6dofimu18, &temp_data, &accel_data, &gyro_data, &tmst_data );
        log_printf( &logger, " TEMP: %.2f \r\n", temp_data );
        log_printf( &logger, " GYRO: x:%d y:%d z:%d \r\n", gyro_data.data_x,gyro_data.data_y,gyro_data.data_z );
        log_printf( &logger, " ACCEL: x:%d y:%d z:%d \r\n", accel_data.data_x,accel_data.data_y,accel_data.data_z );
        log_printf( &logger, "========================== \r\n" );
        Delay_ms( 1000 );
    }    
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.