Intermediate
30 min

Revolutionize the way you track movement with FXOS8700CQ and ATmega328

Your path to seamless motion tracking

6DOF IMU 3 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

6DOF IMU 3 Click

Dev Board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328

Our 6DOF IMU solution empowers you to achieve precise motion and position tracking, opening doors to seamless navigation in various applications

A

A

Hardware Overview

How does it work?

6DOF IMU 3 Click is based on the FXOS8700CQ, a small, low-power, 3-axis, linear accelerometer and 3-axis magnetometer combined into a single package from NXP Semiconductor. The device features a selectable I2C or point-to-point SPI serial interface with a 14-bit accelerometer and 16-bit magnetometer ADC resolution and smart-embedded functions. The FXOS8700CQ has dynamically selectable acceleration full-scale ranges of ±2 g/±4 g/±8 g and a fixed magnetic measurement range of ±1200 μT. For each sensor, the user selects output data rates (ODR) from 1.563Hz to 800Hz. Interleaved magnetic and acceleration data is available at ODR rates up to 400Hz. The sensor's sensitivity is represented in mg/LSB for the accelerometer and μT/LSB for the magnetometer. The magnetometer sensitivity is

fixed at 0.1 μT/LSB. The accelerometer sensitivity changes with the full-scale range selected by the user. Accelerometer sensitivity is 0.244 mg/LSB in 2 g mode, 0.488 mg/LSB in 4 g mode, and 0.976 mg/LSB in 8 g mode, making it ideal for applications such as used for security, like motion detection, door opening, smart home applications, robotics and unmanned aerial vehicles (UAVs) with electronic compass (e-compass) function, in medical purposes, like patient monitoring, fall detection and more. 6DOF IMU 3 Click supports both SPI and I2C communication interfaces, allowing it to be used with various MCUs. The communication interface can be selected by moving SMD jumpers grouped under the COM SEL to an appropriate position (SPI or I2C). The slave I2C address can also be configured by an

SMD jumper when the Click board™ is operated in the I2C mode. An SMD jumper labeled ADDR SEL sets the least significant bit (LSB) of the I2C address. The I2C interface complies with fast mode (400 kHz) and normal mode (100 kHz) I2C standards, while the SPI interface is a classical Host/Peripheral serial port. The FXOS8700CQ is always considered as the peripheral and thus is never initiating the communication. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

6DOF IMU 3 Click top side image
6DOF IMU 3 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

32

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PD2
RST
SPI Chip Select
PB2
CS
SPI Clock
PB5
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

6DOF IMU 3 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Barometer 13 Click front image hardware assembly
Prog-cut hardware assembly
Arduino UNO Rev3 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for 6DOF IMU 3 Click driver.

Key functions:

  • c6dofimu3_check_id - Function check device ID by read ID value from the sensor ID register address of FXOS8700CQ 6-axis sensor with integrated linear accelerometer and magnetometer on 6DOF IMU 3 Click board.

  • c6dofimu3_read_mag_data - Function read 16-bit ( signed ) Magnetometer X-axis, Y-axis data and Z-axis data from the 6 targeted starts from C6DOFIMU3_M_OUT_X_MSB register address of FXOS8700CQ 6-axis sensor with integrated linear accelerometer and magnetometer on 6DOF IMU 3 Click board.

  • c6dofimu3_read_accel_data - Function read 14-bit ( signed ) Accel X-axis, Y-axis data and Z-axis data from the 6 targeted starts from C6DOFIMU3_OUT_X_MSB register address of FXOS8700CQ 6-axis sensor with integrated linear accelerometer and magnetometer on 6DOF IMU 3 Click board.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief 6Dofimu3 Click example
 * 
 * # Description
 * This example demonstrates the use of 6DOF IMU 3 click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and sets the device default configuration.
 * 
 * ## Application Task  
 * Measures acceleration and magnetometer data and displays the results on USB UART each second.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "c6dofimu3.h"

// ------------------------------------------------------------------ VARIABLES

static c6dofimu3_t c6dofimu3;
static log_t logger;

c6dofimu3_accel_t accel_data;
c6dofimu3_mag_t mag_data;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    c6dofimu3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c6dofimu3_cfg_setup( &cfg );
    C6DOFIMU3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c6dofimu3_init( &c6dofimu3, &cfg );

    c6dofimu3_default_cfg( &c6dofimu3 );
    Delay_ms( 100 );
}

void application_task ( void )
{
    if ( c6dofimu3_check_data_ready( &c6dofimu3 ) )
    {
        c6dofimu3_get_data ( &c6dofimu3, &accel_data, &mag_data );

        log_printf( &logger, " Accel X : %.2f mg \t Mag X : %.2f uT\r\n", accel_data.x, mag_data.x );

        log_printf( &logger, " Accel Y : %.2f mg \t Mag Y : %.2f uT\r\n", accel_data.y, mag_data.y );
        
        log_printf( &logger, " Accel Z : %.2f mg \t Mag Z : %.2f uT\r\n", accel_data.z, mag_data.z );
        
        log_printf( &logger, "-------------------------------------\r\n" );

        Delay_ms( 800 );
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.