Intermediate
30 min

Simplify and improve your I2C management needs using TCA9545A and ATmega328P

Switch, mux, and beyond

I2C MUX 2 Click with Arduino UNO Rev3

Published Feb 14, 2024

Click board™

I2C MUX 2 Click

Dev. board

Arduino UNO Rev3

Compiler

NECTO Studio

MCU

ATmega328P

Committed to enhancing your I2C communication capabilities, our mission is to provide seamless access to I2C multiplexing, offering a user-friendly and flexible solution for effectively addressing complex I2C scenarios

A

A

Hardware Overview

How does it work?

I2C MUX 2 Click is based on the TCA9545A, a 4-channel, bidirectional translating I2C switch from Texas instruments. The master SCL/SDA signal pair is directed to four channels of slave devices, SC0/SD0-SC3/SD3. Any individual downstream channel can be selected as well as any combination of the four channels. The TCA9545A also supports interrupt signals in order for the master to detect an interrupt on the INT output terminal that can result from any of the slave devices connected to the INT3-INT0 input terminals. The device offers an active-low RESET input which resets the state machine and allows the TCA9545A to recover should one of the downstream I2C buses get stuck in a low state. The state machine of the device can also be reset by cycling the power supply, VCC, also known as a power-on reset (POR). Both the RESET function and a POR will cause all channels to be deselected. The connections of the I2C data path are controlled by the same I2C master device that is switched to communicate with multiple I2C slaves. The I2C slave address can be configured by soldering SMD jumpers labeled as ADDR SEL to set the least significant bit (LSB). After the successful acknowledgment of the slave address, a single 8-bit control register is written to or read from to determine the selected channels and state

of the interrupts. The TCA9545A may also be used for voltage translation, allowing the use of different bus voltages on each SCn/SDn pair such that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts. This is achieved by using external pull-up resistors to pull the bus up to the desired voltage for the master and each slave channel. One or several SCn/SDn downstream pairs, or channels, are selected by the contents of the control register. After the TCA9545A has been addressed, the control register is written. The four LSBs of the control byte are used to determine which channel or channels are to be selected. When a channel is selected, it becomes active after a stop condition has been placed on the I2C bus. This ensures that all SCn/SDn lines are in a high state when the channel is made active so that no false conditions are generated at the time of connection. A stop condition must occur always right after the acknowledge cycle. The TCA9545A provides four interrupt inputs (one for each channel) and one open-drain interrupt output. When an interrupt is generated by any device, it is detected by the TCA9545A and the interrupt output is driven low. The channel does not need to be active for the detection of the interrupt. A bit also is set in the control register. Bits 4–7 of the control register correspond to channels 0–3 of the

TCA9545A, respectively. Therefore, if an interrupt is generated by any device connected to channel 1, the state of the interrupt inputs is loaded into the control register when a read is accomplished. Likewise, an interrupt on any device connected to channel 0 would cause bit 4 of the control register to be set on the read.  The master then can address the TCA9545A and read the contents of the control register to determine which channel contains the device generating the interrupt. The master then can reconfigure the TCA9545A to select this channel and locate the device generating the interrupt and clear it. It should be noted that more than one device can provide an interrupt on a channel, so it is up to the master to ensure that all devices on a channel are interrogated for an interrupt. The interrupt inputs can be used as general-purpose inputs if the interrupt function is not required. If unused, interrupt input(s) must be connected to VCC. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

I2C MUX 2 Click top side image
I2C MUX 2 Click bottom side image

Features overview

Development board

Arduino UNO is a versatile microcontroller board built around the ATmega328P chip. It offers extensive connectivity options for various projects, featuring 14 digital input/output pins, six of which are PWM-capable, along with six analog inputs. Its core components include a 16MHz ceramic resonator, a USB connection, a power jack, an

ICSP header, and a reset button, providing everything necessary to power and program the board. The Uno is ready to go, whether connected to a computer via USB or powered by an AC-to-DC adapter or battery. As the first USB Arduino board, it serves as the benchmark for the Arduino platform, with "Uno" symbolizing its status as the

first in a series. This name choice, meaning "one" in Italian, commemorates the launch of Arduino Software (IDE) 1.0. Initially introduced alongside version 1.0 of the Arduino Software (IDE), the Uno has since become the foundational model for subsequent Arduino releases, embodying the platform's evolution.

Arduino UNO Rev3 double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

32

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

2048

You complete me!

Accessories

Click Shield for Arduino UNO has two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the Arduino UNO board without effort. The Arduino Uno, a microcontroller board based on the ATmega328P, provides an affordable and flexible way for users to try out new concepts and build prototypes with the ATmega328P microcontroller from various combinations of performance, power consumption, and features. The Arduino Uno has 14 digital input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16 MHz ceramic resonator (CSTCE16M0V53-R0), a USB connection, a power jack, an ICSP header, and reset button. Most of the ATmega328P microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the Arduino UNO board with our Click Shield for Arduino UNO, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Arduino UNO accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PD2
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PC3
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC5
SCL
I2C Data
PC4
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

I2C MUX 2 Click Schematic schematic

Step by step

Project assembly

Click Shield for Arduino UNO front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Arduino UNO Rev3 as your development board.

Click Shield for Arduino UNO front image hardware assembly
Arduino UNO Rev3 front image hardware assembly
Charger 27 Click front image hardware assembly
Prog-cut hardware assembly
Charger 27 Click complete accessories setup image hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Arduino UNO MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for I2C MUX 2 Click driver.

Key functions:

  • i2cmux2_hw_reset - This function resets I2C MUX 2 click board by clearing the RST pin for 100ms

  • i2cmux2_set_channel - Function sets channel of the I2C MUX 2 click board

  • i2cmux2_generic_read - This function reads data from the desired register.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief I2cMux2 Click example
 * 
 * # Description
 * This example demonstrates the use of the I2C MUX 2 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver, performs the device reset, and makes an initial log.
 * 
 * ## Application Task  
 * In this example, we read the device ID register of the connected Click boards.
 * Channel 0 : 6DOF IMU 11 Click [slave address: 0x0E; reg: 0x00; id val.: 0x2D],
 * Channel 1 : Altitude Click    [slave address: 0x60; reg: 0x0C; id val.: 0xC4],
 * Channel 2 : 6DOF IMU 9 Click  [slave address: 0x69; reg: 0x75; id val.: 0xA9],
 * Channel 3 : Compass 3 Click   [slave address: 0x30; reg: 0x2F; id val.: 0x0C].
 * All data logs write on USB UART changes every 2 sec.
 * 
 * @note
 * Disable all unconnected channels from the example using ENABLE_CHANNEL_x macros
 * below to prevent the I2C bus from blocking waiting for a device response.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "i2cmux2.h"

// ------------------------------------------------------------------ VARIABLES

// Comment out the following lines to exclude unconnected channels from the example
#define ENABLE_CHANNEL_0
#define ENABLE_CHANNEL_1
#define ENABLE_CHANNEL_2
#define ENABLE_CHANNEL_3

static i2cmux2_t i2cmux2;
static log_t logger;
static uint8_t rx_data;

// ------------------------------------------------------- ADDITIONAL FUNCTIONS

void display_log ( uint8_t sel_ch )
{
    switch ( sel_ch )
    {
        case I2CMUX2_CMD_SET_CH_0:
        {
            log_printf( &logger, "   0  |  " );
            break;
        }
        case I2CMUX2_CMD_SET_CH_1:
        {
            log_printf( &logger, "   1  |  " );
            break;
        }
        case I2CMUX2_CMD_SET_CH_2:
        {
            log_printf( &logger, "   2  |  " );
            break;
        }
        case I2CMUX2_CMD_SET_CH_3:
        {
            log_printf( &logger, "   3  |  " );
            break;
        }
        default:
            break;
    }
    log_printf( &logger, "0x%.2X", ( uint16_t ) rx_data );
    
    if ( i2cmux2_check_int( &i2cmux2 ) == I2CMUX2_INT_PIN_STATE_ACTIVE )
    {
        if ( i2cmux2_read_interrupt( &i2cmux2 ) & sel_ch  )
        {
            log_printf( &logger, "  |  ON \r\n" );
        }
        else
        {
            log_printf( &logger, "  | OFF \r\n" );
        }
    }
    else
    {
        log_printf( &logger, "  | OFF \r\n" );
    }
}

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    i2cmux2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.
    i2cmux2_cfg_setup( &cfg );
    I2CMUX2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    i2cmux2_init( &i2cmux2, &cfg );

    Delay_ms ( 100 );
    log_printf( &logger, "I2C MUX 2 Click driver init\r\n");
    log_printf( &logger, "---------------------------------------\r\n");
    Delay_ms ( 100 );

    i2cmux2_hw_reset( &i2cmux2 );
    log_printf( &logger, "I2C MUX 2 Click HW reset\r\n");
    log_printf( &logger, "---------------------------------------\r\n");
    Delay_ms ( 100 );
}

void application_task ( void )
{
    log_printf( &logger, "  CH  |   ID   |  INT \r\n" );
    log_printf( &logger, "----------------------\r\n" );
    
#ifdef ENABLE_CHANNEL_0
    // SET CHANNEL 0: 6DOF IMU 11 Click
    i2cmux2_set_channel( &i2cmux2, I2CMUX2_CMD_SET_CH_0, 0x0E );
    Delay_ms ( 100 );
    i2cmux2_generic_read( &i2cmux2, 0x00, &rx_data, 1 );
    display_log( I2CMUX2_CMD_SET_CH_0 );
#endif
    
#ifdef ENABLE_CHANNEL_1
    // SET CHANNEL 1: Altitude Click
    i2cmux2_set_channel( &i2cmux2, I2CMUX2_CMD_SET_CH_1, 0x60 );
    Delay_ms ( 100 );
    i2cmux2_generic_read( &i2cmux2, 0x0C, &rx_data, 1 );
    display_log( I2CMUX2_CMD_SET_CH_1 );
#endif
    
#ifdef ENABLE_CHANNEL_2
    // SET CHANNEL 2: 6DOF IMU 9 Click
    i2cmux2_set_channel( &i2cmux2, I2CMUX2_CMD_SET_CH_2, 0x69 );
    Delay_ms ( 100 );
    i2cmux2_generic_read( &i2cmux2, 0x75, &rx_data, 1 );
    display_log( I2CMUX2_CMD_SET_CH_2 );
#endif

#ifdef ENABLE_CHANNEL_3
    // SET CHANNEL 3: Compass 3 Click
    i2cmux2_set_channel( &i2cmux2, I2CMUX2_CMD_SET_CH_3, 0x30 );
    Delay_ms ( 100 );
    i2cmux2_generic_read( &i2cmux2, 0x2F, &rx_data, 1 );
    display_log( I2CMUX2_CMD_SET_CH_3 );
#endif

    log_printf( &logger, "----------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.