Intermediate
30 min

Fine-tune resistance or any other parameter in a circuit with PTA3043-2015CPB103 and STM32F091RC

Precision in your hands: Redefine control with our mechanical slider

Slider Click with Nucleo-64 with STM32F091RC MCU

Published Feb 26, 2024

Click board™

Slider Click

Dev Board

Nucleo-64 with STM32F091RC MCU

Compiler

NECTO Studio

MCU

STM32F091RC

Our mechanical slide potentiometer, equipped with built-in LEDs to visualize its position, is designed to revolutionize control and provide a smooth and accurate way to adjust various parameters while offering real-time visual feedback

A

A

Hardware Overview

How does it work?

Slider Click is based on two sections: the first section is the slider section itself, with the sliding potentiometer end terminals connected between GND and the VCC, and the wiper connected to the MCP3551 IC, which is a low-power, single-channel 22-bit delta-sigma ADC from Microchip. The slider acts as a voltage divider so that the voltage between the GND and the wiper position is determined by the slider position. This voltage is then applied to the input pin of the 22bit ADC converter and converted to a digital value. The MCP3551 has its SPI lines routed to the mikroBUS™ so that the values can be read easily

by the MCU. The second section of this Click board™ consists of the MAX6969, a well know 16-port, constant-current LED driver from Maxim Integrated, used to control the SMD LEDs. The MAX6969 IC uses the same SPI lines as the ADC, but to avoid data collision, different chip select (CS) line is used. While the ADC uses the CS line routed to the CS pin of the mikroBUS™, the LED driver uses the RST line of the mikroBUS™ as the chip select input. This allows to work with both ICs independently. MAX6969 output enable (OE) pin is routed to the AN pin of the mikroBUS™, making it easy to completely turn off the output stage

of the MAX6969, by setting this pin to a HIGH logic state. If left floating, this pin will be pulled down to the GND by the 10K resistor. The output LED current is constant and it is set to around 20mA by the resistor on the SET pin of the MAX6969. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Slider Click top side image
Slider Click bottom side image

Features overview

Development board

Nucleo-64 with STM32F091RC MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32F091RC MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

256

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

32768

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

LED Driver Output Enable
PC0
AN
LED Driver SPI Chip Select
PC12
RST
ADC SPI Chip Select
PB12
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Slider Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo-64 with STM32F091RC MCU as your development board.

Click Shield for Nucleo-64 front image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
EEPROM 13 Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-64 with STM32XXX MCU MB 1 Mini B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Slider Click driver.

Key functions:

  • slider_read_adc_and_ready - Function calls slider_readADC function, but first checks is ADC conversion finished

  • slider_enable_led_output - Function enables LED output to shows output laches when state is low, and disables LED output when state is high

  • slider_enable_output_laches - Function enables output laches to monitor converted ADC value, when state is high

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Slider Click example
 * 
 * # Description
 * This example detect even the smallest move, faithfully capturing the smoothness of 
 * the slider movement, while digitizing its position.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes click driver
 * 
 * ## Application Task  
 * Converts analog input voltage (VCC), witch value depends on the slider position,
 * to digital output value, shows result of conversion on LED and logs result on USB UART.
 * 
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "slider.h"

// ------------------------------------------------------------------ VARIABLES

static slider_t slider;
static log_t logger;

static float adc_value;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    slider_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    slider_cfg_setup( &cfg );
    SLIDER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    slider_init( &slider, &cfg );
    Delay_ms( 200 );

}

void application_task ( void )
{
    adc_value = slider_write_output( &slider );
    log_printf( &logger, "%.2f\r\n", adc_value );
    Delay_ms( 100 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.