Beginner
10 min

Ensure silent and smooth motion control for your stepper motor with DRV8426 and STM32F410RB

Seamless motion control at your fingertips!

Stepper 18 Click with Nucleo 64 with STM32F410RB MCU

Published Oct 08, 2024

Click board™

Stepper 18 Click

Dev. board

Nucleo 64 with STM32F410RB MCU

Compiler

NECTO Studio

MCU

STM32F410RB

Experience seamless motion control with our user-friendly integrated motor-driver solution, designed for bipolar stepper motors

A

A

Hardware Overview

How does it work?

Stepper 18 Click is based on the DRV8426, an integrated motor-driver solution for bipolar stepper motors with integrated current sense, 1/256 microstepping, STEP/DIR interface, and smart-tune technology Texas Instruments. It provides the maximum integration by integrating two N-channel power MOSFET H-bridges, current sense resistors and regulation circuitry, and a microstepping indexer capable of driving up to 1.5A full-scale output current. Stepper motor drivers need to re-circulate the winding current by implementing several decay modes, like slow, mixed, and fast decay. The DRV8426 comes with smart-tune decay modes, representing a decay mechanism that automatically adjusts for optimal current regulation performance agnostic of voltage, motor speed, variation, and aging effects. Along with this automatic smart-tune, DRV8426 provides traditional decay modes like slow-mixed and mixed decay. The voltage at the VREF pin adjusts the current regulation set-point obtained by the MCP4726, a 12-bit digital-to-analog converter from Microchip. Thus, the digital value is

converted to the appropriate voltage level (VCC) proportional to the received 12-bit number. The MCP4726 also integrates EEPROM for storing DAC register and configuration bit values and communicates with the MCU through the I2C 2-Wire interface supporting Standard (100 kHz), Fast (400 kHz), and High-Speed (3.4 MHz) I2C modes. In addition to I2C communication, the Stepper 18 Click communicates with MCU using several GPIO pins. A simple STEP/DIR interface, labeled as STP and DIR routed to the PWM and AN pins on the mikroBUS™ socket, allows MCU to manage the direction and step rate of the stepper motor. The internal microstepping indexer can execute high-accuracy microstepping without requiring the MCU to handle the winding current level. The indexer can achieve full step, half step, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, and 1/256 microstepping through the M0 and M1 pins routed to the onboard SMD switch. Also, high microstepping contributes to significant audible noise reduction and smooth motion. The Enable pin, labeled as EN and routed to the CS pin of the mikroBUS™ socket, optimizes

power consumption and is used for power ON/OFF purposes. All circuits, including the interface pins, are inactive in this state, and the DRV8426 is in the form of minimum power consumption. Also, a low-power Sleep feature is included, routed to the RST pin of the mikroBUS™ socket alongside the fault-interrupt feature routed to the INT pin of the mikroBUS™ socket. The Sleep Mode allows the system to save power when not actively driving the motor. This Click board™ supports an external power supply for the motor, which can be connected to the input terminal labeled as VM and should be within the range of 4.5V to 33V, while the stepper motor coils can be connected to the terminals labeled as A1, B2, B1, and A2. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

Stepper 18 Click hardware overview image

Features overview

Development board

Nucleo-64 with STM32F410RB MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32C031C6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M4

MCU Memory (KB)

128

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

32768

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

The 28BYJ-48 is an adaptable 5VDC stepper motor with a compact design, ideal for various applications. It features four phases, a speed variation ratio of 1/64, and a stride angle of 5.625°/64 steps, allowing precise control. The motor operates at a frequency of 100Hz and has a DC resistance of 50Ω ±7% at 25°C. It boasts an idle in-traction frequency greater than 600Hz and an idle out-traction frequency exceeding 1000Hz, ensuring reliability in different scenarios. With a self-positioning torque and in-traction torque both exceeding 34.3mN.m at 120Hz, the 28BYJ-48 offers robust performance. Its friction torque ranges from 600 to 1200 gf.cm, while the pull-in torque is 300 gf.cm. This motor makes a reliable and efficient choice for your stepper motor needs.

Stepper 18 Click accessories image

Used MCU Pins

mikroBUS™ mapper

Stepping Direction
PC0
AN
Sleep Mode
PC12
RST
Enable
PB12
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Step Rate
PC8
PWM
Fault Indicator
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Stepper 18 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32F410RB MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32F401RE MCU front image hardware assembly
LTE IoT 5 Click front image hardware assembly
Prog-cut hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
Board mapper by product8 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Stepper 18 Click driver.

Key functions:

  • stepper18_set_out_voltage - Set voltage reference.

  • stepper18_set_dir - Set direction.

  • stepper18_move_motor_angle - Move motor in angle value.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief Stepper18 Click example
 *
 * # Description
 * This example showcases the device's ability to control the motor.
 * It initializes the device for control and moves the motor in two 
 * directions in a variety of speeds for 360 degrees.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes UART and I2C communication modules, and additional  
 * pins for motor control, and set's default configuration
 *
 * ## Application Task
 * First it move motor clockwise for 360 degrees in medium speed. 
 * Then changes direction and moves motor for 180 degrees in slow speed,
 * and additional 180 degrees in fast speed.
 *
 * @note
 * Step resolution is changed by the switches[ M0, M1 ] on device.
 * Full step    :   M0=>0 ,     M1=>0
 * Half step    :   M0=>1 ,     M1=>0
 * Quarter step :   M0=>0 ,     M1=>1
 * 1/8 step     :   M0=>1 ,     M1=>1
 * 1/16 step    :   M0=>Hi-Z ,  M1=>1
 * 1/32 step    :   M0=>0 ,     M1=>Hi-Z
 * 1/64 step    :   M0=>Hi-Z ,  M1=>0
 * 1/128 step   :   M0=>Hi-Z ,  M1=>Hi-Z
 * 1/256 step   :   M0=>1 ,     M1=>0
 *
 * @author Luka Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "stepper18.h"

static stepper18_t stepper18;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper18_cfg_t stepper18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper18_cfg_setup( &stepper18_cfg );
    STEPPER18_MAP_MIKROBUS( stepper18_cfg, MIKROBUS_1 );
    err_t init_flag = stepper18_init( &stepper18, &stepper18_cfg );
    if ( init_flag == I2C_MASTER_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    stepper18_default_cfg ( &stepper18 );
    log_info( &logger, " Application Task " );
    stepper18_set_dir( &stepper18, 0 );
}

void application_task ( void ) 
{
    static uint8_t direction = 0;
    log_printf( &logger, "> Move 360deg in CW direction.\r\n" );
    stepper18_move_motor_angle( &stepper18, 360, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_MEDIUM );
    direction = !direction;
    stepper18_set_dir( &stepper18, direction );
    Delay_ms ( 500 );
    log_printf( &logger, "> Move 180deg in CCW direction.\r\n" );
    stepper18_move_motor_angle( &stepper18, 180, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_SLOW );
    Delay_ms ( 1000 );
    log_printf( &logger, "> Move 180deg in CCW direcion.\r\n" );
    stepper18_move_motor_angle( &stepper18, 180, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_FAST );
    direction = !direction;
    stepper18_set_dir( &stepper18, direction );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END
/*!
 * @file main.c
 * @brief Stepper18 Click example
 *
 * # Description
 * This example showcases the device's ability to control the motor.
 * It initializes the device for control and moves the motor in two 
 * directions in a variety of speeds for 360 degrees.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes UART and I2C communication modules, and additional  
 * pins for motor control, and set's default configuration
 *
 * ## Application Task
 * First it move motor clockwise for 360 degrees in medium speed. 
 * Then changes direction and moves motor for 180 degrees in slow speed,
 * and additional 180 degrees in fast speed.
 *
 * @note
 * Step resolution is changed by the switches[ M0, M1 ] on device.
 * Full step    :   M0=>0 ,     M1=>0
 * Half step    :   M0=>1 ,     M1=>0
 * Quarter step :   M0=>0 ,     M1=>1
 * 1/8 step     :   M0=>1 ,     M1=>1
 * 1/16 step    :   M0=>Hi-Z ,  M1=>1
 * 1/32 step    :   M0=>0 ,     M1=>Hi-Z
 * 1/64 step    :   M0=>Hi-Z ,  M1=>0
 * 1/128 step   :   M0=>Hi-Z ,  M1=>Hi-Z
 * 1/256 step   :   M0=>1 ,     M1=>0
 *
 * @author Luka Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "stepper18.h"

static stepper18_t stepper18;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper18_cfg_t stepper18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper18_cfg_setup( &stepper18_cfg );
    STEPPER18_MAP_MIKROBUS( stepper18_cfg, MIKROBUS_1 );
    err_t init_flag = stepper18_init( &stepper18, &stepper18_cfg );
    if ( init_flag == I2C_MASTER_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    stepper18_default_cfg ( &stepper18 );
    log_info( &logger, " Application Task " );
    stepper18_set_dir( &stepper18, 0 );
}

void application_task ( void ) 
{
    static uint8_t direction = 0;
    log_printf( &logger, "> Move 360deg in CW direction.\r\n" );
    stepper18_move_motor_angle( &stepper18, 360, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_MEDIUM );
    direction = !direction;
    stepper18_set_dir( &stepper18, direction );
    Delay_ms ( 500 );
    log_printf( &logger, "> Move 180deg in CCW direction.\r\n" );
    stepper18_move_motor_angle( &stepper18, 180, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_SLOW );
    Delay_ms ( 1000 );
    log_printf( &logger, "> Move 180deg in CCW direcion.\r\n" );
    stepper18_move_motor_angle( &stepper18, 180, STEPPER18_STEP_RES_FULL, STEPPER18_SPEED_FAST );
    direction = !direction;
    stepper18_set_dir( &stepper18, direction );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.