Beginner
10 min

Provide clear, audible alerts in various settings with EPT-14A4005P and STM32F031K6

Buzz to the future: Piezo speakers in next-gen audio signaling

BUZZ Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

BUZZ Click

Dev. board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Versatile and compact solution for adding audio signalization features to various electronic applications, catering to the needs of developers and engineers in different fields

A

A

Hardware Overview

How does it work?

Buzz Click is based on the EPT-14A4005P, a piezoelectric transducer from Sanco Electronics. It uses a DC voltage to produce an audio signal while drawing a maximum current of 2mA from a wide operating voltage, in this case, 3.3V or 5V. As its name suggests, a piezo buzzer’s core comprises the piezoelectric ceramic element and a metal plate held together by an adhesive. When a DC is passed through, the piezoceramic element contracts and expands, which causes a vibration that produces sound waves. The buzzer has a resonant frequency of 4000Hz, at which the

buzzer vibrates, thus making a sound. The buzzer is 13.8x6.8mm in dimensions, and besides this Click board™, it can be bought separately from MIKROE. The onboard buzzer driver can be controlled by either a digital GPI pin or a PWM line of a mikroBUS™ socket. Users can create a sound using the Sound library supported in MIKROE compilers or utilize the microcontroller’s internal PWM module to generate the signal for the buzzer. Signal frequency determines the sound pitch, and the duty cycle determines the amplitude (sound volume). Both GPI and PWM lines are connected to

the buzzer by default. The user can separate one of the lines by removing the corresponding jumper (J2 or J3). This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

BUZZ Click hardware overview image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
Digital Control Signal
PA4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Control Signal
PA8
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

BUZZ Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
2x4 RGB Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-32 with STM32 MCU MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for BUZZ Click driver.

Key functions:

  • buzz_set_duty_cycle - This function sets the PWM duty cycle in percentages ( Range[ 0..1 ])

  • buzz_pwm_stop - This function stops the PWM moudle output

  • buzz_pwm_start - This function starts the PWM moudle output

  • buzz_play_sound - This function plays sound on buzzer

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief BUZZ Click example
 *
 * # Description
 * This example demonstrates the use of Buzz click boards.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes the driver and logger.
 * 
 * ## Application Task  
 * Plays the Imperial March melody. Also logs an appropriate message on the USB UART.
 * 
 * ## Additional Functions
 * imperial_march( void ) - this function plays the Imperial March melody.
 * 
 * @note
 * The minimal PWM Clock frequency required for this example is the frequency of tone C6 - 1047 Hz. 
 * So, in order to run this example and play all tones correctly, the user will need to decrease 
 * the MCU's main clock frequency in MCU Settings for the certain architectures
 * in order to get the required PWM clock frequency.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "buzz.h"

#define W 4*Q // Whole 4/4 - 4 Beats
#define H 2*Q // Half 2/4 - 2 Beats 
#define Q 250 // Quarter 1/4 - 1 Beat
#define E Q/2 // Eighth 1/8 - 1/2 Beat
#define S Q/4 // Sixteenth 1/16 - 1/4 Beat

#define VOLUME 100 // goes up to 1000

static buzz_t buzz;
static log_t logger;

static void imperial_march( ) {
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, H );
    Delay_ms( 1 + H );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_E7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_E7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_E7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F7, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_Ab6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, H );
    Delay_ms( 1 + H );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_A7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_Ab7, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_G7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_Gb7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_E7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F7, VOLUME, E );
    Delay_ms( 1 + E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_Bb6, VOLUME, E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_Eb7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_D7, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_Db7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_B6, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, E );
    Delay_ms( 1 + E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_Ab6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_E7, VOLUME, H );
    Delay_ms( 1 + H );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_A7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_A7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_Ab7, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_G7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_Gb7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_E7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_F7, VOLUME, E );
    Delay_ms( 1 + E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_Bb6, VOLUME, E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_Eb7, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_D7, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_Db7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_B6, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, E );
    Delay_ms( 1 + E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E );
    Delay_ms( 1 + E );
    buzz_play_sound( &buzz, BUZZ_NOTE_Ab6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    
    buzz_play_sound( &buzz, BUZZ_NOTE_A6, VOLUME, Q );
    Delay_ms( 1 + Q );
    buzz_play_sound( &buzz, BUZZ_NOTE_F6, VOLUME, E + S );
    Delay_ms( 1 + E + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_C7, VOLUME, S );
    Delay_ms( 1 + S );
    buzz_play_sound( &buzz, BUZZ_NOTE_Ab6, VOLUME, H );
    Delay_ms( 1 + H );
}


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    buzz_cfg_t buzz_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    buzz_cfg_setup( &buzz_cfg );
    BUZZ_MAP_MIKROBUS( buzz_cfg, MIKROBUS_1 );
    err_t init_flag  = buzz_init( &buzz, &buzz_cfg );
    if ( init_flag == PWM_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    buzz_set_duty_cycle ( &buzz, 0.0 );
    buzz_pwm_start( &buzz );

    log_info( &logger, " Application Task " );
}

void application_task ( void ) {
    log_printf( &logger, "Playing the Imperial March melody ...\r\n" );
    imperial_march( ); 
    Delay_ms( 10000 );
}

void main ( void )  {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.