Intermediate
30 min

Elevate your cooling experience with TC654 and STM32F031K6

Seamlessly adjust fan speeds for a relaxing atmosphere

Fan 5 Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

Fan 5 Click

Dev Board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Take control of the perfect airflow with our PWM-mode fan speed controller!

A

A

Hardware Overview

How does it work?

Fan 5 Click is based on the TC654, a fan speed controller from Microchip that allows you to control and monitor the speed of two DC brushless fans. The TC654 is based on the FanSense™ technology, which protects your application against fan failure and eliminates the need for 3-wire fans. With the TC654, the fan speed can be controlled by its input voltage or the serial interface, allowing for high flexibility. The input voltage of the TC654 represents temperature, typically provided by a chosen internal or external thermistor (selected using an NTC SEL jumper). The TC654 controls fan speed according to the system temperature by pulse-width modulating the voltage across the fan. This method reduces the fan'sfan's acoustic noise and extends the fan'sfan's working life. An external N-channel MOSFET, one per channel, controls the

fans. Modulating the voltage applied to the gate of the MOSFETs also modulates the voltage applied to the fan. The PWM output can be adjusted between 30% and 100%, based on the TC654's input voltage, or programmed, as mentioned, via the I2C interface to allow fan speed control without needing an external thermistor. The standard I2C 2-Wire interface reads data and configures settings with a maximum frequency of 100kHz. The TC654 also measures and monitors fan revolutions per minute (RPM), representing a measure of its health. As a fan'sfan's bearings wear out, the fan slows down and eventually stops (locked rotor). The TC654 can detect open, shorted, unconnected, and locked rotor fan conditions by monitoring the fan'sfan's RPM level. Apart from the availability of this information on the FLT pin of the mikroBUS™ socket, this condition can also be

visually detected through the red LED marked with FAULT. The fan RPM data and threshold registers are available over the I2C interface, allowing complete system control. In addition to the two terminals for fan connections, there is another terminal, VFAN, for an external 12V power supply for FAN1. FAN2 uses the necessary supply from the 5V mikroBUS™ power rail. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V MCUs can use the communication lines correctly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

Fan 5 Click hardware overview image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Fault Indicator
PA12
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB6
SCL
I2C Data
PB7
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Fan 5 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
Stepper 22 Click front image hardware assembly
Prog-cut hardware assembly
Stepper 22 Click complete accessories setup image hardware assembly
Nucleo-32 with STM32 MCU Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
STM32 M4 Clicker HA MCU/Select Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Fan 5 Click driver.

Key functions:

  • fan5_get_rpm1 - Fan 5 get speed of FAN1

  • fan5_set_duty_cycle - Fan 5 set duty cycle

  • fan5_turn_on_fans - Fan 5 turn on fans

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Fan 5 Click example
 *
 * # Description
 * This example demonstrates the use of FAN 5 click board by controlling and 
 * regulating the fan motors speed.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver, performs the click default configuration, reads 
 * manufacturer id and sets configuration in correspondence to user-selected mode.
 *
 * ## Application Task
 * If Fan control is selected example will monitor FAN 1 speed and if the speed 
 * falls below 500 RPM for longer then 2.4 seconds fan output will be disabled.
 * In other case, example is showcasing speed control by changing duty cycle and 
 * monitoring fan speed.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "fan5.h"

#define FAN_CONTROL_MODE

static fan5_t fan5;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    fan5_cfg_t fan5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    fan5_cfg_setup( &fan5_cfg );
    FAN5_MAP_MIKROBUS( fan5_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == fan5_init( &fan5, &fan5_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( FAN5_ERROR == fan5_default_cfg ( &fan5 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    fan5_turn_on_fans( &fan5 );
    uint8_t id = 0;
    fan5_get_mfr_id( &fan5, &id );
    log_printf( &logger, " Manufacturer ID: 0x%X \r\n", ( uint16_t ) id );
    
#if defined FAN_CONTROL_MODE
    fan5_set_duty_cycle( &fan5, FAN5_100_PER_DUTY );
    fan5_set_fan_fault1( &fan5, 500 );
#else
    fan5_set_duty_cycle( &fan5, FAN5_30_PER_DUTY );
    fan5_set_fan_fault1( &fan5, 0 );
#endif
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
#if defined FAN_CONTROL_MODE
    uint16_t speed = 0;
    uint8_t flag_data = 0;
    
    fan5_get_rpm1( &fan5, &speed);
    log_printf( &logger, " SPEED: %d RPM \r\n", speed );
    
    if ( FAN5_FAULT == fan5_get_fault_state( &fan5 ) )
    {
        fan5_get_status_flags ( &fan5, &flag_data );
        log_printf( &logger, " FLAG: %d \r\n", flag_data );
        if ( FAN5_F1F_FLAG & flag_data )
        {
            log_printf( &logger, " FAN SPEED DROPED !!! \r\n" );
            log_printf( &logger, " OUTPUT IS DISABLED \r\n" );
            fan5_turn_off_fans( &fan5 );
            for( ; ; );
        }
    }
    
    Delay_ms( 2000 );
#else
    uint16_t speed;
    uint8_t duty_value;
    
    for ( duty_value = FAN5_30_PER_DUTY; duty_value <= FAN5_100_PER_DUTY; duty_value++ )
    {
        fan5_set_duty_cycle( &fan5, duty_value );
        log_printf( &logger, " Duty value: %d \r\n", ( uint16_t ) duty_value );
        Delay_ms( 5000 );
        fan5_get_rpm1( &fan5, &speed);
        log_printf( &logger, " SPEED: %d RPM \r\n", speed );
        Delay_ms( 500 );
    }
#endif
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.