Beginner
10 min

Experience seamless multitasking and quick data processing with 23LC1024 and STM32F031K6

Highly reliable nonvolatile memory

SRAM Click with Nucleo 32 with STM32F031K6 MCU

Published Oct 01, 2024

Click board™

SRAM Click

Dev. board

Nucleo 32 with STM32F031K6 MCU

Compiler

NECTO Studio

MCU

STM32F031K6

Whether it's in networking, embedded systems, or consumer electronics, SRAM memory solutions drive performance to new heights

A

A

Hardware Overview

How does it work?

SRAM Click is based on the 23LC1024, a highly reliable 1Mbit Serial SRAM designed to interface directly with Microchip's Serial Peripheral Interface (SPI). The 23LC1024 is organized as 128k words of 8 bits each and provides fast access alongside infinite read and write cycles to the memory array. The embedded nonvolatile elements incorporate the CMOS technology, making this Click board™ an ideal choice for secure data storage, creating the world's most reliable nonvolatile memory. The serial SRAM has three modes of operation, byte, page, and sequential, which are chosen by setting bits in the MODE register. In Byte mode, the R/W operations are limited to only one byte,

while in Page mode, R/W operations are limited to within the addressed page. The last Sequential mode allows the entire array to be written to and read from. The 23LC1024 communicates with MCU through a standard SPI interface that enables very high clock speeds up to 20MHz with zero cycle delay read and write cycles. It may also interface with MCUs that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol. In addition, the 23LC1024 can operate in SDI and SQI modes. In the SDI mode, the SI and SO data lines are bidirectional, allowing the transfer of two bits per clock pulse, while in the SQI mode, two additional

data lines enable the transfer of four bits per clock pulse. The SRAM Click also has an additional HOLD signal, routed to the RST pin of the mikroBUS™ socket labeled as HLD, used to suspend the serial communication without resetting the serial sequence. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the PWR SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

SRAM Click hardware overview image

Features overview

Development board

Nucleo 32 with STM32F031K6 MCU board provides an affordable and flexible platform for experimenting with STM32 microcontrollers in 32-pin packages. Featuring Arduino™ Nano connectivity, it allows easy expansion with specialized shields, while being mbed-enabled for seamless integration with online resources. The

board includes an on-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration with three interfaces: Virtual Com port, mass storage, and debug port. It offers a flexible power supply through either USB VBUS or an external source. Additionally, it includes three LEDs (LD1 for USB communication, LD2 for power,

and LD3 as a user LED) and a reset push button. The STM32 Nucleo-32 board is supported by various Integrated Development Environments (IDEs) such as IAR™, Keil®, and GCC-based IDEs like AC6 SW4STM32, making it a versatile tool for developers.

Nucleo 32 with STM32F031K6 MCU double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

ARM Cortex-M0

MCU Memory (KB)

32

Silicon Vendor

STMicroelectronics

Pin count

32

RAM (Bytes)

4096

You complete me!

Accessories

Click Shield for Nucleo-32 is the perfect way to expand your development board's functionalities with STM32 Nucleo-32 pinout. The Click Shield for Nucleo-32 provides two mikroBUS™ sockets to add any functionality from our ever-growing range of Click boards™. We are fully stocked with everything, from sensors and WiFi transceivers to motor control and audio amplifiers. The Click Shield for Nucleo-32 is compatible with the STM32 Nucleo-32 board, providing an affordable and flexible way for users to try out new ideas and quickly create prototypes with any STM32 microcontrollers, choosing from the various combinations of performance, power consumption, and features. The STM32 Nucleo-32 boards do not require any separate probe as they integrate the ST-LINK/V2-1 debugger/programmer and come with the STM32 comprehensive software HAL library and various packaged software examples. This development platform provides users with an effortless and common way to combine the STM32 Nucleo-32 footprint compatible board with their favorite Click boards™ in their upcoming projects.

Click Shield for Nucleo-32 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Data Transfer Pause
PA11
RST
SPI Chip Select
PA4
CS
SPI Clock
PB3
SCK
SPI Data OUT
PB4
MISO
SPI Data IN
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

SRAM Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-144 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 32 with STM32F031K6 MCU as your development board.

Click Shield for Nucleo-144 front image hardware assembly
Nucleo 144 with STM32L4A6ZG MCU front image hardware assembly
2x4 RGB Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-32 with STM32 MCU MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for SRAM Click driver.

Key functions:

  • sram_write_byte - Function write the 8-bit data to the target 24-bit register address of 23LC1024

  • sram_read_byte - Function read the 8-bit data to the target 24-bit register address of 23LC1024

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Sram Click example
 * 
 * # Description
 * SRAM Click presents additional 1Mbit SRAM memory that can be added to device.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Application Init performs Logger and Click initialization.
 * 
 * ## Application Task  
 * SRAM Click communicates with register via SPI protocol by write data to and read data from 23LC1024 Serial RAM device. 
 * Results are being sent to the UART where you can track their changes. 
 * All data logs on USB UART for aproximetly every 1 sec.
 * 
 * \author Mihajlo Djordjevic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "sram.h"

char send_buffer[ 17 ] = { 'm', 'i', 'k', 'r', 'o', 'E', 'l', 'e', 'k', 't', 'r', 'o', 'n', 'i', 'k', 'a', ' ' };
char mem_data[ 17 ];
uint8_t n_cnt;

// ------------------------------------------------------------------ VARIABLES

static sram_t sram;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    sram_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    sram_cfg_setup( &cfg );
    SRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    sram_init( &sram, &cfg );
    
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ------ SRAM Click  ----- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

void application_task ( void )
{
    log_printf( &logger, " Writing text :\r\n" );
   
    for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
    {
        sram_write_byte( &sram, n_cnt, send_buffer[ n_cnt ] );
        Delay_ms ( 100 );
        
        log_printf( &logger, "%c", send_buffer[ n_cnt ] );

        mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
    }
    
    
    log_printf( &logger, "\r\n" );
    log_printf( &logger, " Read text :\r\n" );
    for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
    {
        mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
        Delay_ms ( 100 );
        log_printf( &logger, "%c", mem_data[ n_cnt ] );
    }
    log_printf( &logger, "\r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    
    Delay_ms ( 1000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.