Beginner
10 min

Say goodbye to data loss worries with CY14B101I and STM32G474RE

nvSRAM: Where data lives forever

nvSRAM 3 Click with Nucleo 64 with STM32G474RE MCU

Published Nov 08, 2024

Click board™

nvSRAM 3 Click

Dev Board

Nucleo 64 with STM32G474RE MCU

Compiler

NECTO Studio

MCU

STM32G474RE

Trust nvSRAM as your data's timeless vault, ensuring that precious memories stay alive and intact

A

A

Hardware Overview

How does it work?

nvSRAM 3 Click as its foundation uses the CY14B101I, a 1-Mbit nvSRAM organized as 128K words of 8 bits each with a fully-featured real-time clock from Infineon. The CY14B101I specifies one million endurance cycles for cells with data retention of a minimum of 20 years, while the QuantumTrap cells provide highly reliable, nonvolatile data storage. In system power loss, data from the SRAM is automatically transferred to its nonvolatile cell using energy stored in a capacitor labeled as C2. During the Power-Up, data from the nonvolatile cell is recalled automatically in the SRAM array and available to the user. The endurance cycle consumes when data transfer happens from the SRAM cells to nonvolatile cells during the Power-Down. This Click board™ can be permanently powered by placing jumpers labeled as RTC-CAP or RTC-BATT. The CY14B101I uses an external battery power source from the button cell battery holder by utilizing an automatic backup. It is suitable for

12mm Coin Cell batteries when there is no power supply on its main power terminals, allowing for uninterrupted operation. nvSRAM 3 Click communicates with MCU using a standard I2C 2-Wire interface, with clock frequencies up to 100kHz in the Standard, 400kHz in the Fast, 1MHz in FastPlus, and up to 3.4MHz in High-Speed Mode. The CY14B101I offers zero cycle delay write operation with infinite SRAM write endurance. It also allows the choice of the least significant bit (LSB) of its I2C slave address by positioning SMD jumpers labeled ADDR SEL to an appropriate position marked as 0 and 1. An additional feature of this Click board™ represents the Write Protection and Interrupt functions labeled as WP and INT routed on the PWM and INT pins of the mikroBUS™ socket. The WP pin is an active-high pin that protects the entire memory and all registers from write operations. MCU must hold the WP pin high to inhibit all the write operations. When this pin is high, all memory and register

writes are prohibited, and the address counter does not increment. On the other hand, the CY14B101I can use an INT pin in several ways, such as interrupt output, calibration, or a square wave, programmable to respond to the clock alarm, the watchdog timer, and the power monitor. The STORE operation of the CY14B101I can be controlled and acknowledged via the HSB pin, routed on the RST pin of the mikroBUS™ socket. If no STORE/RECALL is in progress, the CY14B101I can use this pin to request a hardware STORE cycle. When the HSB pin is in a LOW logic state, the CY14B101I conditionally initiates a STORE operation. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used for further development.

nvSRAM 3 Click hardware overview image

Features overview

Development board

Nucleo-64 with STM32G474R MCU offers a cost-effective and adaptable platform for developers to explore new ideas and prototype their designs. This board harnesses the versatility of the STM32 microcontroller, enabling users to select the optimal balance of performance and power consumption for their projects. It accommodates the STM32 microcontroller in the LQFP64 package and includes essential components such as a user LED, which doubles as an ARDUINO® signal, alongside user and reset push-buttons, and a 32.768kHz crystal oscillator for precise timing operations. Designed with expansion and flexibility in mind, the Nucleo-64 board features an ARDUINO® Uno V3 expansion connector and ST morpho extension pin

headers, granting complete access to the STM32's I/Os for comprehensive project integration. Power supply options are adaptable, supporting ST-LINK USB VBUS or external power sources, ensuring adaptability in various development environments. The board also has an on-board ST-LINK debugger/programmer with USB re-enumeration capability, simplifying the programming and debugging process. Moreover, the board is designed to simplify advanced development with its external SMPS for efficient Vcore logic supply, support for USB Device full speed or USB SNK/UFP full speed, and built-in cryptographic features, enhancing both the power efficiency and security of projects. Additional connectivity is

provided through dedicated connectors for external SMPS experimentation, a USB connector for the ST-LINK, and a MIPI® debug connector, expanding the possibilities for hardware interfacing and experimentation. Developers will find extensive support through comprehensive free software libraries and examples, courtesy of the STM32Cube MCU Package. This, combined with compatibility with a wide array of Integrated Development Environments (IDEs), including IAR Embedded Workbench®, MDK-ARM, and STM32CubeIDE, ensures a smooth and efficient development experience, allowing users to fully leverage the capabilities of the Nucleo-64 board in their projects.

Nucleo 64 with STM32G474RE MCU double side image

Microcontroller Overview

MCU Card / MCU

STM32G474RE front image

Architecture

ARM Cortex-M4

MCU Memory (KB)

512

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

128k

You complete me!

Accessories

Click Shield for Nucleo-64 comes equipped with two proprietary mikroBUS™ sockets, allowing all the Click board™ devices to be interfaced with the STM32 Nucleo-64 board with no effort. This way, Mikroe allows its users to add any functionality from our ever-growing range of Click boards™, such as WiFi, GSM, GPS, Bluetooth, ZigBee, environmental sensors, LEDs, speech recognition, motor control, movement sensors, and many more. More than 1537 Click boards™, which can be stacked and integrated, are at your disposal. The STM32 Nucleo-64 boards are based on the microcontrollers in 64-pin packages, a 32-bit MCU with an ARM Cortex M4 processor operating at 84MHz, 512Kb Flash, and 96KB SRAM, divided into two regions where the top section represents the ST-Link/V2 debugger and programmer while the bottom section of the board is an actual development board. These boards are controlled and powered conveniently through a USB connection to program and efficiently debug the Nucleo-64 board out of the box, with an additional USB cable connected to the USB mini port on the board. Most of the STM32 microcontroller pins are brought to the IO pins on the left and right edge of the board, which are then connected to two existing mikroBUS™ sockets. This Click Shield also has several switches that perform functions such as selecting the logic levels of analog signals on mikroBUS™ sockets and selecting logic voltage levels of the mikroBUS™ sockets themselves. Besides, the user is offered the possibility of using any Click board™ with the help of existing bidirectional level-shifting voltage translators, regardless of whether the Click board™ operates at a 3.3V or 5V logic voltage level. Once you connect the STM32 Nucleo-64 board with our Click Shield for Nucleo-64, you can access hundreds of Click boards™, working with 3.3V or 5V logic voltage levels.

Click Shield for Nucleo-64 accessories 1 image

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
STORE Operation Control
PC12
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect
PC8
PWM
Interrupt
PC14
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PB8
SCL
I2C Data
PB9
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

nvSRAM 3 Click Schematic schematic

Step by step

Project assembly

Click Shield for Nucleo-64 accessories 1 image hardware assembly

Start by selecting your development board and Click board™. Begin with the Nucleo 64 with STM32G474RE MCU as your development board.

Click Shield for Nucleo-64 accessories 1 image hardware assembly
Nucleo 64 with STM32G474RE MCU front image hardware assembly
BarGraph 5 Click front image hardware assembly
Prog-cut hardware assembly
Nucleo-64 with STM32GXXX MCU MB 1 Micro B Conn - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Clicker 4 for STM32F4 HA MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for nvSRAM 3 Click driver.

Key functions:

  • nvsram3_memory_write - This function write a desired number of data bytes starting from the selected memory address by using I2C serial interface.

  • nvsram3_memory_read - This function reads a desired number of data bytes starting from the selected memory address by using I2C serial interface.

  • nvsram3_get_rtc_time - This function get RTC time data structure.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief nvSRAM3 Click example
 *
 * # Description
 * The demo application shows how to write/read data to/from nvSRAM memory.
 * It also sets RTC date and time, then reads it in an infinite loop and displays results on USB UART each second. 
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes device, reads the device ID, writes desired message to memory and sets RTC date and time.
 *
 * ## Application Task
 * Reads current date and time and then reads the message that we have previusly stored in the memory.
 * All data is being logged on USB UART.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "nvsram3.h"

static nvsram3_t nvsram3;
static log_t logger;

static char demo_data[ 9 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 13 ,10 , 0 };
static char rx_data[ 9 ];
static uint32_t memory_addr;
static uint8_t new_sec = 255;
static uint16_t c_year = 2020;

static nvsram3_rtc_time_t time;
static nvsram3_rtc_date_t date;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    nvsram3_cfg_t nvsram3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    nvsram3_cfg_setup( &nvsram3_cfg );
    NVSRAM3_MAP_MIKROBUS( nvsram3_cfg, MIKROBUS_1 );
    err_t init_flag = nvsram3_init( &nvsram3, &nvsram3_cfg );
    
    if ( init_flag == I2C_MASTER_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "     nvSRAM 3 click    \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    
    nvsram3_default_cfg ( &nvsram3 );
    Delay_ms( 100 );
    
    log_printf( &logger, " DEVICE ID: 0x%.8LX\r\n", nvsram3_get_device_id( &nvsram3 ) );
    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms( 100 );
    
    memory_addr = 0x10000;
    
    log_printf( &logger, "  Write data : %s", demo_data );
    nvsram3_memory_write( &nvsram3, memory_addr, &demo_data[ 0 ], 9 );
    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms( 1000 );
    
    date.day_of_week = 4;
    date.day = 31;
    date.month = 12;
    date.year = 2020;
    nvsram3_set_rtc_date( &nvsram3, date );
    Delay_ms( 100 );
    
    time.hours = 23;
    time.min = 59;
    time.sec = 50;
    nvsram3_set_rtc_time( &nvsram3, time );
    Delay_ms( 100 );
}

void application_task ( void ) 
{
    nvsram3_get_rtc_time( &nvsram3, &time );
    nvsram3_get_rtc_date( &nvsram3, &date );
    
    if ( time.sec != new_sec ) 
    {
        log_printf( &logger, "  Date      : %.2d-%.2d-%.4d\r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
        log_printf( &logger, "  Time      : %.2d:%.2d:%.2d\r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
        log_printf( &logger, "- - - - - - - - - - - - - - -\r\n" );
        new_sec = time.sec;
        
        if ( date.year != c_year ) 
        {
            log_printf( &logger, "     Happy New Year    \r\n" );
            c_year = date.year;
        } 
        else 
        {
            nvsram3_memory_read( &nvsram3, memory_addr, &rx_data[ 0 ], 9 );
            log_printf( &logger, "  Read data : %s", rx_data );    
        }
               
        log_printf( &logger, "-----------------------\r\n" );
    } 
    else 
    {
        Delay_ms( 500 );    
    }
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.