Beginner
10 min

Creates dynamic red visual outputs with MAX7129 and STM32L496AG

Serial 8x8 red LED matrix display

8x8 R Click with Discovery kit with STM32L496AG MCU

Published Jul 22, 2025

Click board™

8x8 R Click

Dev. board

Discovery kit with STM32L496AG MCU

Compiler

NECTO Studio

MCU

STM32L496AG

Create dynamic red LED matrix display perfect for indicators, animations, and real-time visual feedback

A

A

Hardware Overview

How does it work?

8x8 R Click is a compact 64 red LED matrix display Click board™, featuring a MAX7129 LED driver for precise control. It enables independent LED control, 16-step digital brightness adjustment, and glitch-free startup by blanking the display on power-up. With a fast SPI interface, 8x8 R Click ensures smooth data transmission and quick

response. The MAX7129 IC integrates 8x8 RAM storage, a 16-bit data shifter, a constant current source, and a PWM intensity control register, allowing efficient LED matrix operation. Designed for easy integration, the board requires only one external resistor for current control, simplifying the design. The 800Hz refresh rate ensures flicker-free

performance, while daisy-chaining support allows expansion with multiple modules. Ideal for LED matrix displays, bar graphs, and panel meters, 8x8 R Click provides a reliable solution for visual output in embedded applications.

8x8 R Click hardware overview image

Features overview

Development board

The 32L496GDISCOVERY Discovery kit serves as a comprehensive demonstration and development platform for the STM32L496AG microcontroller, featuring an Arm® Cortex®-M4 core. Designed for applications that demand a balance of high performance, advanced graphics, and ultra-low power consumption, this kit enables seamless prototyping for a wide range of embedded solutions. With its innovative energy-efficient

architecture, the STM32L496AG integrates extended RAM and the Chrom-ART Accelerator, enhancing graphics performance while maintaining low power consumption. This makes the kit particularly well-suited for applications involving audio processing, graphical user interfaces, and real-time data acquisition, where energy efficiency is a key requirement. For ease of development, the board includes an onboard ST-LINK/V2-1

debugger/programmer, providing a seamless out-of-the-box experience for loading, debugging, and testing applications without requiring additional hardware. The combination of low power features, enhanced memory capabilities, and built-in debugging tools makes the 32L496GDISCOVERY kit an ideal choice for prototyping advanced embedded systems with state-of-the-art energy efficiency.

Discovery kit with STM32L496AG MCU double side image

Microcontroller Overview

MCU Card / MCU

STM32L496AG Image

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

STMicroelectronics

Pin count

169

RAM (Bytes)

327680

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
PG11
CS
SPI Clock
PI1
SCK
SPI Data OUT
PD3
MISO
SPI Data IN
PI3
MOSI
NC
NC
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

8x8 R Click Schematic schematic

Step by step

Project assembly

Discovery kit with STM32H750XB MCU front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Discovery kit with STM32L496AG MCU as your development board.

Discovery kit with STM32H750XB MCU front image hardware assembly
Thermo 21 Click front image hardware assembly
Prog-cut hardware assembly
Thermo 21 Click complete accessories setup image hardware assembly
Board mapper by product7 hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Discovery kit with STM32H750XB MCU NECTO MCU Selection Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto image step 11 hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

8x8 R Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.

Example Description
This demo example shows a drawing of Image, new create string and character on the screen.

Key functions:

  • c8x8r_cfg_setup - Config Object Initialization function.

  • c8x8r_init - Initialization function.

  • c8x8r_default_cfg - Click Default Configuration function.

  • c8x8r_write_cmd - This function writes a desired number of data bytes starting from the selected register by using SPI serial interface.

  • c8x8r_display_refresh - The function switches off all LEDs.

  • c8x8r_display_byte - This function displayes one character to the display.

Application Init
Configuring Clicks and log objects. Settings the Click in the default configuration.

Application Task
Shows one byte, then scrolls the string and image, every 1 sec.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief 8x8 R Click example
 *
 * # Description
 * This demo example shows a drawing of Image, new create string and character on the screen.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Configuring Clicks and log objects.
 * Settings the Click in the default configuration.
 * 
 * ## Application Task  
 * Shows one byte, then scrolls the string and image, every 1 sec.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "c8x8r.h"

static c8x8r_t c8x8r;
static log_t logger;

uint8_t demo_string[ 11 ] = { ' ', '-', 'M', 'i', 'k', 'r', 'o', 'E', '-', ' ', 0 };
uint8_t demo_img_on[ 8 ] = { 0x08, 0x1c, 0x36, 0x22, 0x08, 0x1c, 0x36, 0x22 };
uint8_t demo_img_off[ 8 ] = { 0xf7, 0xe3, 0xc9, 0xdd, 0xf7, 0xe3, 0xc9, 0xdd };
char demo_char = 'A';

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    c8x8r_cfg_t c8x8r_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    c8x8r_cfg_setup( &c8x8r_cfg );
    C8X8R_MAP_MIKROBUS( c8x8r_cfg, MIKROBUS_1 );
    err_t init_flag  = c8x8r_init( &c8x8r, &c8x8r_cfg );
    if ( init_flag == SPI_MASTER_ERROR ) {
        log_info( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    c8x8r_default_cfg ( &c8x8r );
    log_info( &logger, " Application Task " );
    Delay_ms ( 1000 );
}

void application_task ( void ) {
    c8x8r_display_byte( &c8x8r, demo_char );
    Delay_ms ( 1000 );
    
    c8x8r_display_string( &c8x8r, &demo_string[ 0 ] );
    Delay_ms ( 1000 );

    c8x8r_display_image( &c8x8r, &demo_img_on[ 0 ] );
    Delay_ms ( 1000 );

    c8x8r_display_image( &c8x8r, &demo_img_off[ 0 ] );
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.