Intermediate
30 min

Master VCT monitoring with LTC2990 and TM4C129ENCPDT

TempVoltCurrent insight

VCT Monitor Click with Fusion for Tiva v8

Published Aug 12, 2023

Click board™

VCT Monitor Click

Dev Board

Fusion for Tiva v8

Compiler

NECTO Studio

MCU

TM4C129ENCPDT

Track real-time temperature, voltage, and current easily for issue detection and operational optimization

A

A

Hardware Overview

How does it work?

VCT Monitor Click is based on the LTC2990, a high-performance temperature, voltage, and current monitor with the I2C serial interface from Analog Devices. The LTC2990 can be configured to measure many combinations of internal temperature, remote temperature, remote voltage or current, and internal VCC with single or repeated measurements. It fits in systems needing sub-millivolt voltage resolution, 1% current measurement, and 1°C temperature accuracy or any combination. The input signals are selected with an input MUX, controlled by the control logic

block. The control logic uses the mode bits in the control register to manage the sequence and types of data acquisition. The control logic also controls the variable current sources during remote temperature acquisition. The ADC performs the necessary conversion(s) and supplies the data to the control logic for further processing for temperature measurements or routing to the appropriate data register for voltage and current measurements. Remote measurements are performed on terminals labeled as TEMP and LOAD using multiple ADC conversions and source

currents to compensate for sensor series resistance. The LTC2990 is calibrated to yield the correct temperature for a remote diode with an ideality factor of 1.004. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

VCT Monitor Click hardware overview image

Features overview

Development board

Fusion for TIVA v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different 32-bit ARM® Cortex®-M based MCUs from Texas Instruments, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over a WiFi network. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for TIVA v8 provides a fluid and immersive working experience, allowing access

anywhere and under any circumstances at any time. Each part of the Fusion for TIVA v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for TIVA v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for Tiva v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

1024

Silicon Vendor

Texas Instruments

Pin count

128

RAM (Bytes)

262144

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PD2
SCL
I2C Data
PD3
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

VCT Monitor Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for Tiva v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output via UART Mode

1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.

2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.

3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.

4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART_Application_Output

Software Support

Library Description

This library contains API for VCT Monitor Click driver.

Key functions:

  • vctmonitor_get_status - Gets status value

  • vctmonitor_read_temperature - Get temperature function

  • vctmonitor_read_current - Current function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief VCTMonitor Click example
 *
 * # Description
 * This is an example which demonstrates the use of VCT Monitor Click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization driver enables the USB uart terminal and I2C.  
 *
 * ## Application Task
 * Reads temperature, current value, and differential voltage every 4 seconds.
 *
 * @note
 * The click has been tested using the following:
 *       - Power supply - 4V
 *       - Current (Load) - 0A to 3A
 *       - External MMBT3904 temperature sensor
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "vctmonitor.h"

static vctmonitor_t vctmonitor;
static log_t logger;

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    vctmonitor_cfg_t vctmonitor_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    vctmonitor_cfg_setup( &vctmonitor_cfg );
    VCTMONITOR_MAP_MIKROBUS( vctmonitor_cfg, MIKROBUS_1 );
    err_t init_flag = vctmonitor_init( &vctmonitor, &vctmonitor_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

void application_task ( void ) {
    float temperature;
    float voltage;
    float current;

    voltage = vctmonitor_read_voltage_differential( &vctmonitor );
    log_printf( &logger, " Voltage    : %.2f mV \r\n", voltage );

    current = vctmonitor_read_current( &vctmonitor );
    log_printf( &logger, " Current    : %.2f mA \r\n", current );

    temperature = vctmonitor_read_temperature( &vctmonitor );
    log_printf( &logger, " Temperature: %.2f C \r\n", temperature );

    log_printf( &logger, "- - - - - - - - - - - -\r\n" );
    Delay_ms( 4000 );     
}

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.