Beginner
10 min

Ensure precise object detection with MAX44000 and MKV42F64VLH16

See what's near with clarity!

PROXIMITY 2 Click with Fusion for ARM v8

Published Jun 21, 2023

Click board™

PROXIMITY 2 Click

Dev Board

Fusion for ARM v8

Compiler

NECTO Studio

MCU

MKV42F64VLH16

Enhance safety and efficiency with real-time detection of nearby objects or individuals

A

A

Hardware Overview

How does it work?

Proximity 2 Click is based on the MAX44000, a wide-dynamic range ambient light sensor with an integrated infrared proximity sensor from Analog Devices. Designed using proprietary BiCMOS technology, the MAX44000 combines three optical sensors, two A/D converters, and digital functionality into one package. A MAX44000's photodiode array converts the light to a current, processed by low-power circuitry into a digital value which is then stored in an output register and later read by an I2C serial interface. This feature allows the MAX44000 to replicate the human eye's optical response in various environments. The infrared proximity photodiodes are optimized for better sensitivity for

near-infrared signals, specifically 850nm, and can be used for proximity sensor measurements. The proximity sensing uses an external, pulsed infrared LED source, the SFH 4651-Z, to emit controlled amounts of infrared radiation. When the SFH 4651-Z reflects some of this infrared radiation to the MAX44000, it is detected by the integrated light detector and then used to determine the object's proximity to the sensor. It is essential to note that different objects at the same distance from the sensor can reflect different amounts of infrared radiation depending on their texture and color. The MAX44000 communicates with the MCU using the standard I2C 2-Wire interface with a maximum frequency of 400kHz. This Click board™

also supports a programmable interrupt feature, routed to the INT pin on the mikroBUS™ socket, that simplifies and improves system efficiency by eliminating the need to poll a sensor for a data (ambient light or proximity receive interrupt has occurred), resulting in a significant power saving. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used as a reference for further development.

PROXIMITY 2 Click hardware overview image

Features overview

Development board

Fusion for ARM v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different ARM® Cortex®-M based MCUs regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, Fusion for ARM v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the Fusion for ARM v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. Fusion for ARM v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Fusion for ARM v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

64

Silicon Vendor

NXP

Pin count

64

RAM (Bytes)

16384

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Interrupt
PC4
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC6
SCL
I2C Data
PC7
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Schematic

PROXIMITY 2 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Fusion for ARM v8 as your development board.

Fusion for PIC v8 front image hardware assembly
Buck 22 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
v8 SiBRAIN MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output via UART Mode

1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.

2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.

3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.

4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART_Application_Output

Software Support

Library Description

This library contains API for Proximity 2 Click driver.

Key functions:

  • proximity2_read_prox - Read PROX Data Register function

  • proximity2_read_als - Read ALS Data Registers function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * \file 
 * \brief Proximity2 Click example
 * 
 * # Description
 * This is an example that shows the most important
 * functions that Proximity 2 click has.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Configuring clicks and log objects.
 * Setting the click in the default configuration.
 * 
 * ## Application Task  
 * Shows the most important proximity and ambient value.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "proximity2.h"

// ------------------------------------------------------------------ VARIABLES

static proximity2_t proximity2;
static log_t logger;

static uint8_t proxi_val;
static uint16_t ambient;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    proximity2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "Application Init" );
    
    //  Click initialization.

    proximity2_cfg_setup( &cfg );
    PROXIMITY2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    proximity2_init( &proximity2, &cfg );
    
    proximity2_default_cfg ( &proximity2 );
    
    log_info( &logger, "Application Init" );
    Delay_ms( 1000 );
}

void application_task ( void )
{
    proxi_val =  proximity2_read_prox ( &proximity2 );
    ambient = proximity2_read_als ( &proximity2 );

    log_printf( &logger, " Proximity ADC : %d \r\n", (uint16_t)proxi_val );
    
    log_printf( &logger, " Light    : %d \r\n", ambient );

    log_printf( &logger, "------------------\r\n" );
    
    Delay_ms( 300 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.