30 min

Unlock bespoke DC motor control with VNHD7008AY and STM32F745VG

Effortlessly tame your motors

H-Bridge 6 Click with UNI-DS v8

Published May 31, 2023

Click board™

H-Bridge 6 Click

Development board



NECTO Studio



Elevate your automotive experience with this advanced DC motor driving solution



Hardware Overview

How does it work?

H-Bridge 6 Click is based on the VNHD7008AY, a DC motor driver for automotive applications that integrates a fully protected dual high-side driver and protection for the external power MOSFETs from STMicroelectronics. This Click board™ can interface with the MCU to select the motor direction and the brake conditions via input signals on INA and INB pins but also possesses a MultiSense pin for a motor-current monitor. Two selection pins (SEL0 and SEL1) are available to address to the MCU the information from the MultiSense pin. It operates from a single power supply input labeled as VBATT in a range from 4V to 28V, which can be directly connected to a DC voltage supply. Also, this device is fully protected against supply under-voltage, output overcurrent, and device overtemperature events.

To Power-On the VNHD7008AY from Stand-By Mode,it is recommended to toggle INA, INB, SEL0, or SEL1 pins from 0 to 1 state to come out from Stand-By Mode. Also, toggle the PWM pin from 0 to 1 state with a delay of 20μs to avoid any overstress on the device in case of an existing short-to-battery situation. H-Bridge 6 Click communicates with MCU through a well-known 8-bit I/O expander, the PCA9538A from NXP Semiconductor, using the standard I2C 2-Wire interface with a maximum frequency of 400kHz. The VNHD7008AY also allows the choice of the least significant bit (LSB) of its I2C slave address by positioning SMD jumpers labeled as ADDR SEL to an appropriate position marked as 0 and 1. In addition to this feature, this Click board™ also contains additional functionalities routed to the PWM, AN, and RST pins on the mikroBUS™ socket.

The PWM pin, up to 20 kHz, allows to control of the speed of the motor in all possible conditions, while the AN pin labeled as MS allows monitoring of the motor current, provides a voltage proportional to the battery value, and the information on the temperature of the VNHD7008AY. The RST pin has retained its reset function by default. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.


Features overview

Development board

UNI-DS v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports a wide range of microcontrollers, such as different STM32, Kinetis, TIVA, CEC, MSP, PIC, dsPIC, PIC32, and AVR MCUs regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer over WiFi. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, UNI-DS v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the UNI-DS v8 development board contains the components necessary for the most efficient operation of the same board. An advanced integrated CODEGRIP programmer/debugger module offers many valuable programming/debugging options, including support for JTAG, SWD, and SWO Trace (Single Wire Output)), and seamless integration with the Mikroe software environment. Besides, it also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector. Communication options such as USB-UART, USB

HOST/DEVICE, CAN (on the MCU card, if supported), and Ethernet is also included. In addition, it also has the well-established mikroBUS™ standard, a standardized socket for the MCU card (SiBRAIN standard), and two display options for the TFT board line of products and character-based LCD. UNI-DS v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI-DS v8 horizontal image

Microcontroller Overview

MCU Card / MCU



8th Generation


ARM Cortex-M7

MCU Memory (KB)


Silicon Vendor


Pin count


RAM (Bytes)


You complete me!


DC Gear Motor - 430RPM (3-6V) represents an all-in-one combination of a motor and gearbox, where the addition of gear leads to a reduction of motor speed while increasing the torque output. This gear motor has a spur gearbox, making it a highly reliable solution for applications with lower torque and speed requirements. The most critical parameters for gear motors are speed, torque, and efficiency, which are, in this case, 520RPM with no load and 430RPM at maximum efficiency, alongside a current of 60mA and a torque of Rated for a 3-6V operational voltage range and clockwise/counterclockwise rotation direction, this motor represents an excellent solution for many functions initially performed by brushed DC motors in robotics, medical equipment, electric door locks, and much more.

H-Bridge 6 Click accessories image

Used MCU Pins

mikroBUS™ mapper

Current Sense/Diagnostic Feedback
Power Supply
Motor Speed Control
I2C Clock
I2C Data
Power Supply

Take a closer look


H-Bridge 6 Click Schematic schematic

Step by step

Project assembly

Fusion for PIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI-DS v8 as your development board.

Fusion for PIC v8 front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for PIC32MZ1024EFK144 front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
v8 SiBRAIN Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for H-Bridge 6 Click driver.

Key functions:

  • void hbridge6_generic_write ( uint8_t reg, uint8_t tx_data ) - Generic write function.
  • uint8_t hbridge6_generic_read ( uint8_t reg ) - Generic read function.
  • void hbridge6_set_direction ( uint8_t direction ) - Set the direction function.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

 * @file main.c
 * @brief HBridge6 Click example
 * # Description
 * This is an example that demonstrates the use of H-Bridge 6 Click board.
 * The demo application is composed of two sections :
 * ## Application Init
 * Initialization driver enables - I2C,
 * reset the device and set default configuration,
 * initialization and configure the PWM, also write log.
 * ## Application Task
 * It shows moving in the clockwise direction of rotation
 * and moving in the counterclockwise direction of rotation
 * from slow to fast speed.
 * All data logs write on USB uart changes.
 * @author Stefan Ilic

#include "board.h"
#include "log.h"
#include "hbridge6.h"

static hbridge6_t hbridge6;
static log_t logger;

void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridge6_cfg_t hbridge6_cfg;  /**< Click config object. */

     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridge6_cfg_setup( &hbridge6_cfg );
    HBRIDGE6_MAP_MIKROBUS( hbridge6_cfg, MIKROBUS_1 );
    err_t init_flag = hbridge6_init( &hbridge6, &hbridge6_cfg );
    if ( I2C_MASTER_ERROR == init_flag || PWM_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "  Set default config.  \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    hbridge6_default_cfg( &hbridge6 );
    Delay_ms( 100 );
    log_info( &logger, " Application Task " );

void application_task ( void ) {
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = 0;

    log_printf( &logger, "       Clockwise       \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    hbridge6_set_direction( &hbridge6, HBRIDGE6_DIRECTION_CLOCKWISE );

    while ( duty_cnt < 10 ) {
        duty = duty_cnt / 10.0;
        hbridge6_set_duty_cycle ( &hbridge6, duty );
        Delay_ms( 500 );
        duty_cnt += duty_inc;

    log_printf( &logger, "         Brake         \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    hbridge6_set_direction( &hbridge6, HBRIDGE6_DIRECTION_BRAKE );
    duty_cnt = 1;
    Delay_ms( 1000 );

    log_printf( &logger, "    Counterclockwise   \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    hbridge6_set_direction( &hbridge6, HBRIDGE6_DIRECTION_COUNTERCLOCKWISE );

    while ( duty_cnt < 10 ) {
        duty = duty_cnt / 10.0;
        hbridge6_set_duty_cycle ( &hbridge6, duty );
        Delay_ms( 500 );
        duty_cnt += duty_inc;

    log_printf( &logger, "         Brake         \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    hbridge6_set_direction( &hbridge6, HBRIDGE6_DIRECTION_BRAKE );
    duty_cnt = 1;

    Delay_ms( 3000 );
    hbridge6_pwm_stop( &hbridge6 );
    Delay_ms( 2000 );
    hbridge6_pwm_start( &hbridge6 );

void main ( void ) {
    application_init( );

    for ( ; ; ) {
        application_task( );

// ------------------------------------------------------------------------ END

Additional Support