Integrate reliable real-time clock into your solution to enable precise event sequencing and accurate time measurement
A
A
Hardware Overview
How does it work?
RTC 11 Click is based on the AB0815, an ultra-low-power coupled with a highly sophisticated feature set, the real-time clock from Abracon. The AB0815 is a full-function RTC and includes three feature groups: baseline and advanced timekeeping features and power management. Functions from each feature group may be controlled via I/O offset mapped registers accessed through the SPI serial interface. The baseline timekeeping feature group supports the standard 32.786 kHz crystal oscillation mode for maximum frequency accuracy with an ultra-low current draw of 22nA. This feature includes standard counters for minutes, hours, dates, months, years, and weekdays. A complement of countdown timers and alarms may additionally be set to initiate interrupts or
resets on several outputs. The most common configuration on this Click board™ is a battery-backed-up RTC, which maintains time and may hold data in RAM. In addition to the AB0815, the RTC 11 Click is equipped with a button cell battery holder compatible with the 3000TR battery holder, suitable for 12mm Coin Cell batteries. By utilizing an automatic backup switch, the AB0815 can use an external battery power source when there is no power supply on its main power terminals, thus allowing for uninterrupted operation. The AB0815 communicates with MCU using the standard SPI serial interface that supports modes 0 and 3 with a maximum frequency of 2 MHz. The flexible inputs of the AB0815 can be used to aggregate various interrupt sources, including external digital inputs,
analog levels, timers, and alarms, into a single interrupt source to an MCU. Based on this, functions like external interrupt or watchdog timer reset could be found on this Click board™ routed on the RST and AN pins of the mikroBUS™ socket labeled as EXI and WDI, as well as the primary and secondary interrupt outputs routed on the INT and PWM pins of the mikroBUS™ socket labeled as IT1 and IT2. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.
Features overview
Development board
EasyPIC v7 is the seventh generation of PIC development boards specially designed to develop embedded applications rapidly. It supports a wide range of 8-bit PIC microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB-B. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyPIC v7 allows you to connect accessory boards, sensors, and custom electronics more efficiently than ever. Each part of
the EasyPIC v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use various external power sources, including an external 12V power supply, 7-23V AC or 9-32V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B) connector. Communication options such as
USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets. These sockets cover a wide range of 8-bit PIC MCUs, from PIC10F, PIC12F, PIC16F, PIC16Enh, PIC18F, PIC18FJ, and PIC18FK families. EasyPIC v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU
Architecture
PIC
MCU Memory (KB)
64
Silicon Vendor
Microchip
Pin count
40
RAM (Bytes)
3728
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Schematic
Step by step
Project assembly
Track your results in real time
Application Output via UART Mode
1. Once the code example is loaded, pressing the "FLASH" button initiates the build process, and programs it on the created setup.
2. After the programming is completed, click on the Tools icon in the upper-right panel, and select the UART Terminal.
3. After opening the UART Terminal tab, first check the baud rate setting in the Options menu (default is 115200). If this parameter is correct, activate the terminal by clicking the "CONNECT" button.
4. Now terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.
Software Support
Library Description
This library contains API for RTC 11 Click driver.
Key functions:
rtc11_set_time
- Set time hours, minutes and seconds functionrtc11_get_time
- Get time hours, minutes and seconds functionrtc11_set_date
- Set date day of the week, day, month and year function
Open Source
Code example
This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.
/*!
* @file main.c
* @brief RTC11 Click example
*
* # Description
* This is an example that demonstrates the use of the RTC 11 click board™.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initalizes SPI, performs software reset, sets
* system time and date, and starts clocking system.
*
* ## Application Task
* Demonstrates use of RTC 11 click board by reading and
* displaying time and date via USART terminal.
*
* Additional Functions :
*
* void disp_day_of_the_week ( uint8_t w_day ) - Writes the day of the week on
* USART terminal.
*
* @author Stefan Ilic
*
*/
#include "board.h"
#include "log.h"
#include "rtc11.h"
static rtc11_t rtc11;
static log_t logger;
static rtc11_time_t time;
static rtc11_date_t date;
uint8_t sec_flag = 0xFF;
void disp_day_of_the_week ( uint8_t w_day ) {
switch ( w_day )
{
case 0 :
{
log_printf( &logger, "Monday" );
break;
}
case 1 :
{
log_printf( &logger, "Tuesday" );
break;
}
case 2 :
{
log_printf( &logger, "Wednesday" );
break;
}
case 3 :
{
log_printf( &logger, "Thursday" );
break;
}
case 4 :
{
log_printf( &logger, "Friday" );
break;
}
case 5 :
{
log_printf( &logger, "Saturday" );
break;
}
case 6 :
{
log_printf( &logger, "Sunday" );
break;
}
default :
{
break;
}
}
}
void application_init ( void ) {
log_cfg_t log_cfg; /**< Logger config object. */
rtc11_cfg_t rtc11_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
rtc11_cfg_setup( &rtc11_cfg );
RTC11_MAP_MIKROBUS( rtc11_cfg, MIKROBUS_1 );
err_t init_flag = rtc11_init( &rtc11, &rtc11_cfg );
if ( SPI_MASTER_ERROR == init_flag ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_printf( &logger,"------------------------\r\n" );
log_printf( &logger," Software reset \r\n" );
rtc11_soft_rst( &rtc11 );
Delay_ms( 100 );
time.hours = 23;
time.min = 59;
time.sec = 55;
log_printf( &logger,"------------------------\r\n" );
log_printf( &logger," Setting time: %.2d:%.2d:%.2d \r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
rtc11_set_time ( &rtc11, time );
Delay_ms( 100 );
date.day_of_week = 0;
date.day = 19;
date.month = 7;
date.year = 21;
log_printf( &logger,"------------------------\r\n" );
log_printf( &logger," Setting date: %.2d/%.2d/%.2d \r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
rtc11_set_date( &rtc11, date );
Delay_ms( 100 );
rtc11_stp_sys_slk ( &rtc11, RTC11_PROP_DIS );
log_info( &logger, " Application Task " );
log_printf( &logger,"------------------------\r\n" );
}
void application_task ( void ) {
rtc11_get_time ( &rtc11, &time );
Delay_ms( 10 );
rtc11_get_date ( &rtc11, &date );
Delay_ms( 10 );
if ( sec_flag != time.sec ) {
log_printf( &logger, " Date: " );
disp_day_of_the_week( date.day_of_week );
log_printf( &logger, " %.2d/%.2d/20%.2d \r\n", ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
log_printf( &logger, " Time: %.2d:%.2d:%.2d \r\n", ( uint16_t ) time.hours, ( uint16_t ) time.min, ( uint16_t ) time.sec );
log_printf( &logger,"--------------------------\r\n" );
}
sec_flag = time.sec;
}
void main ( void ) {
application_init( );
for ( ; ; ) {
application_task( );
}
}
// ------------------------------------------------------------------------ END