Beginner
10 min

Easily upgrade and expand storage capacity with SST26VF064B and ATmega644P

Lightning-fast data waves

Flash 2 Click with EasyAVR v7

Published Aug 25, 2023

Click board™

Flash 2 Click

Dev. board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega644P

Harness the capability of flash memory to provide considerably faster read and write speeds than traditional hard drives, thereby elevating the overall performance and responsiveness of the system

A

A

Hardware Overview

How does it work?

Flash 2 Click is based on the SST26VF064B, a Flash memory chip from Microchip. The Flash memory density is usually expressed in bits, so exactly 67,108,864 bits are organized in units of 8 bits (bytes), which gives 8,388,608 bytes of data memory. This memory module contains 2048 sectors of 4 KB each. Furthermore, the memory is organized into pages. One page holds 256 bytes, and there are 32,768 pages (32,768 pages x 256 bytes = 8,388,608 bytes total). Having insight into how the memory cells are organized is crucial for understanding the Write and Erase operations. The SST26VF064B offers a flexible memory protection scheme that allows each individual block to be write-protected. The addition of 2KB of

one-time programmable (OTP) memory can be useful for building secure storage devices and similar secure storage applications. It can be used to store various security data. Once programmed, this memory can be permanently locked without the possibility to reprogram it ever again. The flash memory IC used on this Click board™ features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve the advanced information from the device, such as the operating characteristics, structure and vendor specified information, memory size, operating voltage, timing information, and more. Flash 2 Click uses a standard 4-wire SPI serial interface to communicate with the host MCU, supporting

clock frequencies of up to 104MHz. Additional pins routed to the mikroBUS™ include the WP write protect pin, used to put the device into the hardware write protect mode, and the HLD hold pin, used to hold the data transfer. Flash 2 Click also supports Quad SPI mode, in which the WP and HLD pins become SO2 and SO3. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Flash 2 Click hardware overview image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

Architecture

AVR

MCU Memory (KB)

64

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

4096

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Data Transfer Pause/SO3
PA6
RST
SPI Chip Select
PA5
CS
SPI Clock
PB7
SCK
SPI Data OUT/SO1
PB6
MISO
SPI Data IN/SO0
PB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Write Protect/SO2
PD4
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Flash 2 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
GNSS2 Click front image hardware assembly
EasyAVR v7 Access DIP MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Flash 2 Click driver.

Key functions:

  • flash2_global_block_unlock - Global block-protection unlock function

  • flash2_chip_erase - Chip-erase function

  • flash2_read_generic - Generic read function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief Flash2 Click example
 * 
 * # Description
 * This application demonstrates the process of writing and reading data from Flash 2 click memory.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Flash Driver Initialization, initialization of click by setting mikorBUS to
 * approprieate logic levels, performing global block unlock and chip erase functions.
 * 
 * ## Application Task  
 * Writing data to click memory and displaying the read data via UART. 
 * 
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "flash2.h"

// ------------------------------------------------------------------ VARIABLES

static flash2_t flash2;
static log_t logger;

char wr_data[ 10 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 13, 10 , 0 };
char rd_data[ 10 ];

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    flash2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    flash2_cfg_setup( &cfg );
    FLASH2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash2_init( &flash2, &cfg );
    Delay_ms( 300 );
    flash2_global_block_unlock( &flash2 );
    Delay_ms( 400 );
    flash2_chip_erase( &flash2 );
    Delay_ms( 300 );
}

void application_task ( void )
{
    log_printf( &logger, "Writing MikroE to flash memory, from address 0x015015:\r\n" );
    flash2_write_generic( &flash2, 0x015015, &wr_data[ 0 ], 9 );
    log_printf( &logger, "Reading 9 bytes of flash memory, from address 0x015015:\r\n" );
    flash2_read_generic( &flash2, 0x015015, &rd_data[ 0 ], 9 );
    log_printf( &logger, "Data read: %s\r\n", rd_data );
    Delay_ms( 1000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.