Intermediate
30 min

Manage I2C communications across multiple devices with TCA9548A and ATmega1284

8-in-1 bidirectional bliss

I2C MUX 3 Click with EasyAVR v7

Published Sep 03, 2023

Click board™

I2C MUX 3 Click

Dev Board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega1284

Unlock the power of bidirectional translating switches to seamlessly connect and control a wide array of I2C-enabled devices, simplifying your integration process

A

A

Hardware Overview

How does it work?

I2C MUX 3 Click is based on the TCA9548A, a low voltage eight bidirectional translating switch with an active-low reset input controlled through the I2C serial interface from Texas Instruments. The master SCL/SDA signal pair is directed to eight channels of slave devices, SC0/SD0-SC7/SD7, where any individual downstream channel can be selected and any combination of the eight channels. It features I2C control using a single 8-bit control register in which each bit controls the enabling and disabling of one of the corresponding eight switch channels for I2C data flow. This Click board™ includes a low dropout linear regulator AP7331 from Diodes Incorporated to provide the 2.45V supply voltage for the TCA9548A. When the TCA9548APWR is turned on for the first time or at any time, the device needs

to be reset by cycling the power supply, which means that the Power-On reset requirements must be followed to ensure the I2C bus logic is appropriately initialized. Additionally, suppose communication on the I2C bus enters a fault state. In that case, the TCA9548A can be reset to resume normal operation using the RST pin feature or by a Power-On reset, which results from cycling power to the device. I2C MUX 3 Click communicates with MCU using the standard I2C 2-Wire interface that supports Standard-Mode (100 kHz) and Fast-Mode (400 kHz) operations. The TCA9548A has a 7-bit slave address with the first five MSBs fixed to 1110. The address pins A0, A1, and A2 are programmed by the user and determine the value of the last three LSBs of the slave address, which can be selected by onboard SMD jumpers labeled as

ADDR SEL, allowing selection of the slave address LSBs. It also has an active-low reset signal routed on the RST pin of the mikroBUS™ socket used to recover from a bus-fault condition. When this signal is asserted LOW, the TCA9548A resets its registers alongside the I2C state machine and deselects all channels. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. More information about the TCA9548A can be found in the attached datasheet. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

I2C MUX 3 Click top side image
I2C MUX 3 Click bottom side image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

ATmega1284

Architecture

AVR

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

16384

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
PA6
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
I2C Clock
PC0
SCL
I2C Data
PC1
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

I2C MUX 3 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
GNSS2 Click front image hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
EasyAVR v7 Access DIP MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for I2C MUX 3 Click driver.

Key functions:

  • i2cmux3_rd_slv - Slave Device Read function

  • i2cmux3_dev_enable - Device enable function

  • i2cmux3_hw_rst - Hardware reset function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief I2cMux3 Click example
 * 
 * # Description
 * This example demonstrates the use of I2C MUX 3 Click board.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initalizes the driver, preforms hardware reset, then enables channel 0 and 
 * makes an initial log.
 * 
 * ## Application Task  
 * Reads the device ID of a 6DOF IMU 12 click (dev ID: 0x24) and displays it 
 * on the USB UART each second.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "i2cmux3.h"

// ------------------------------------------------------------------ VARIABLES

static i2cmux3_t i2cmux3;
static log_t logger;

uint8_t id_val;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    i2cmux3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    i2cmux3_cfg_setup( &cfg );
    I2CMUX3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    i2cmux3_init( &i2cmux3, &cfg );
    Delay_ms( 100 );
    
    i2cmux3_hw_rst( &i2cmux3 );
    Delay_ms( 100 );
    i2cmux3_ch_sel( &i2cmux3, 0 );
    log_printf( &logger, " Please connect a 6DOF IMU 12 click to channel 0\r\n" );
    log_printf( &logger, "-------------------------------\r\n" );
    Delay_ms( 2000 );
}

void application_task ( void )
{
    i2cmux3_rd_slv ( &i2cmux3, 0x68, 0x00, &id_val, 1 );
    log_printf( &logger, " The click device ID is:  0x%.2X \r\n", ( uint16_t ) id_val );
    log_printf( &logger, "-------------------------------\r\n" );
    Delay_ms( 1000 );
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.