Intermediate
30 min

Simplify remote control integration with TSOP98638 and ATmega1284P

Infrared mastery

IR 2 Click with EasyAVR v7

Published Nov 01, 2023

Click board™

IR 2 Click

Dev. board

EasyAVR v7

Compiler

NECTO Studio

MCU

ATmega1284P

Upgrade your design's user experience with our purpose-built IR solution, designed for simplicity and compactness, making it an ideal choice for projects across various industries, from consumer electronics to smart home automation

A

A

Hardware Overview

How does it work?

IR 2 Click is based on the TSOP98638, a miniaturized sensor for receiving the modulated signal of QEE113 IR emitting diode from Vishay Semiconductors. All Vishay IR receivers have the same circuit architecture consisting of a photodetector, pre-amplifier, and automatic gain control (ACG) to surpass ambient noise with signals transmitted to it with a wavelength of 940nm. This Click board™ represents a compact and easy solution for adding infrared (IR) remote control to your design suitable for IR repeater applications. The infrared signal generates an equivalent photocurrent in the integrated photo PIN diode. The DC part of the signal is blocked in

the bias circuit, and the AC part is passed to a trans-impedance amplifier, followed by an automatic gain-control amplifier and an integrated bandpass filter. A comparator, an integrator, and a Schmitt Trigger stage perform the final signal conditioning. The blocks “Automatic Gain Control” and “Automatic Threshold Control” dynamically control the operating points and the threshold levels required to suppress noise from disturbance sources. The digital output signal has an active-low polarity and consists of an incoming optical burst envelope signal without the carrier frequency. IR 2 Click communicates with the target MCU via selectable

GPIO lines. The selection can be made by positioning SMD jumpers labeled COMM SEL to an appropriate position. The default configuration of this Click board™ allows transmission via the PWM pin of the mikroBUS™ socket and reception via the INT pin, while the other configuration allows communication using TX and RX pins. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used as a reference for further development.

IR 2 Click top side image
IR 2 Click bottom side image

Features overview

Development board

EasyAVR v7 is the seventh generation of AVR development boards specially designed for the needs of rapid development of embedded applications. It supports a wide range of 16-bit AVR microcontrollers from Microchip and has a broad set of unique functions, such as a powerful onboard mikroProg programmer and In-Circuit debugger over USB. The development board is well organized and designed so that the end-user has all the necessary elements in one place, such as switches, buttons, indicators, connectors, and others. With four different connectors for each port, EasyAVR v7 allows you to connect accessory boards, sensors, and custom electronics more

efficiently than ever. Each part of the EasyAVR v7 development board contains the components necessary for the most efficient operation of the same board. An integrated mikroProg, a fast USB 2.0 programmer with mikroICD hardware In-Circuit Debugger, offers many valuable programming/debugging options and seamless integration with the Mikroe software environment. Besides it also includes a clean and regulated power supply block for the development board. It can use a wide range of external power sources, including an external 12V power supply, 7-12V AC or 9-15V DC via DC connector/screw terminals, and a power source via the USB Type-B (USB-B)

connector. Communication options such as USB-UART and RS-232 are also included, alongside the well-established mikroBUS™ standard, three display options (7-segment, graphical, and character-based LCD), and several different DIP sockets which cover a wide range of 16-bit AVR MCUs. EasyAVR v7 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyAVR v7 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Architecture

AVR

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

40

RAM (Bytes)

16384

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Transmit Signal
PD4
PWM
Receive Signal
PD2
INT
Transmit Signal
PD1
TX
Transmit Signal
PD0
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

IR 2 Click Schematic schematic

Step by step

Project assembly

EasyAVR v7 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyAVR v7 as your development board.

EasyAVR v7 front image hardware assembly
Buck 22 Click front image hardware assembly
MCU DIP 40 hardware assembly
EasyAVR v7 MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
EasyPIC PRO v7a Display Selection Necto Step hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for IR 2 Click driver.

Key functions:

  • ir2_get_out_pin - This function returns the OUT pin logic state

  • ir2_nec_send_data - This function sends an address and data bytes using NEC protocol

  • ir2_nec_read_data - This function reads an address and data bytes by using NEC protocol

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief IR2 Click example
 *
 * # Description
 * This example demonstrates the use of an IR 2 click board by showing
 * the communication between the two click boards configured as a receiver and transmitter
 * using the NEC protocol.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and logger and displays the selected application mode.
 *
 * ## Application Task
 * Depending on the selected mode, it sends a desired message using NEC protocol or
 * reads all the received data and displays them on the USB UART.
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "ir2.h"

#define IR2_TRANSMITTER_MODE    // Uncomment this line to switch to the transmitter mode

#define IR2_ADDRESS     0xAB
#define IR2_DATA        "MikroE - IR 2 click board\r\n"

static ir2_t ir2;
static log_t logger;

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ir2_cfg_t ir2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ir2_cfg_setup( &ir2_cfg );
    IR2_MAP_MIKROBUS( ir2_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == ir2_init( &ir2, &ir2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_printf( &logger, "- - - - - - - - - - - - \r\n" );
#ifdef IR2_TRANSMITTER_MODE
    log_printf( &logger, "-  Transmitter mode   - \r\n" );
#else
    log_printf( &logger, "-    Receiver mode    - \r\n" );
#endif
    log_printf( &logger, "- - - - - - - - - - - - \r\n" );
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
#ifdef IR2_TRANSMITTER_MODE
    log_printf( &logger, " Sending message." );
    
    for ( uint8_t cnt = 0; cnt < sizeof ( IR2_DATA ); cnt++ )
    {
        ir2_nec_send_data ( &ir2, IR2_ADDRESS, IR2_DATA[ cnt ] );
        log_printf( &logger, "." );
    }
    
    log_printf( &logger, "\r\n Message has been sent! \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - \r\n" );
    Delay_ms ( 500 );
#else
    uint8_t address;
    uint8_t rx_data;
    
    if ( IR2_OK == ir2_nec_read_data ( &ir2, &address, &rx_data ) )
    {
        log_printf( &logger, "Address: 0x%.2X, Data: %c\r\n", ( uint16_t ) address, rx_data );
    }
#endif
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.