Intermediate
30 min

Ensure precise voltage management at your fingertips with KMR221 and PIC32MZ1024EFH064

Switching voltage, one button press at a time

Analog Key Click with PIC32MZ clicker

Published Oct 17, 2023

Click board™

Analog Key Click

Dev. board

PIC32MZ clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFH064

This analog keyboard, equipped with six tactile pushbuttons, allows users to select from a range of voltage levels with unparalleled precision, making it ideal for diverse electrical applications

A

A

Hardware Overview

How does it work?

Analog Key Click is based on the KMR221, a high-quality SPST switch from C&K. These buttons are rated to endure up to 300,000 switching cycles and have very low ON resistance of less than 100 mΩ. The buttons are rubberized and have a pleasant tactile feel when pressed. By pressing a button, the respective connection point becomes redirected to the input of the OPA344, a low-power operational amplifier from Texas Instruments, which is configured to work with the unity gain, forming a buffer for the input of the microcontroller (MCU). This prevents changes of the impedance at the MCU input pin, as well as a limited amount of ESD protection. By

substituting the voltage divider resistors with two equivalent resistances (RE1 for the upper set of resistors, and RE2 for the lower set of resistors) the principle can be understood even better: when the top button is pressed (T1), the equivalent RE1 resistance will be 0 Ω, so regardless of the RE2 resistance, the voltage at the AN pin will be equal to VCC. When the second button (T2) is pressed, the equivalent RE1 resistance will be 1 kΩ, while the RE2 resistance will be 5K. The VCC voltage for the voltage divider can be selected using the SMD jumper on the Click board™, labeled as VSEL. This jumper selects either a 3.3V or 5V mikroBUS™ power rail as the VCC source. Since there are many

MCUs that cannot tolerate 5V on their pins, the VSEL position is set to 3.3V by default. However, if the 5V operation is required for specific application, it is enough to move the position of the VSEL jumper to the 5V position. The selected output voltage appears at the AN pin of the mikroBUS™, labeled as VO on Analog Key click. It can be then sampled by the A/D converter of the MCU and used to control a device. Since Analog Key click requires just a single pin for its operation, it is perfectly suited for applications where the pin count restriction is a big problem.

Analog Key Click top side image
Analog Key Click bottom side image

Features overview

Development board

PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under

any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard

and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

PIC32MZ clicker double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

64

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Analog Output
RE4
AN
NC
NC
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

Analog Key Click Schematic schematic

Step by step

Project assembly

PIC32MZ clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the PIC32MZ clicker as your development board.

PIC32MZ clicker front image hardware assembly
Thermo 26 Click front image hardware assembly
Prog-cut hardware assembly
Micro B Connector clicker - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for Analog Key Click driver.

Key functions:

  • analogkey_get_key - This function returns which button is pressed.

  • analogkey_set_resolution - This function sets the resolution.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief AnalogKey Click example
 * 
 * # Description
 * This application logs what button is pressed.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initializes driver.
 * 
 * ## Application Task  
 * Reads ADC value and detects which button is pressed based on that value.
 * 
 * 
 * \author Nemanja Medakovic
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "analogkey.h"

#define ANALOGKEY_N_SAMPLES  50

// ------------------------------------------------------------------ VARIABLES

static analogkey_t analogkey;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    analogkey_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init... ----" );

    analogkey_cfg_setup( &cfg );
    ANALOGKEY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    if ( analogkey_init( &analogkey, &cfg ) == ADC_ERROR )
    {
        log_info( &logger, "---- Application Init Error. ----" );
        log_info( &logger, "---- Please, run program again... ----" );

        for ( ; ; );
    }
    log_info( &logger, "---- Application Init Done. ----\n" );
}

void application_task ( void )
{
    float an_voltage = 0;
    analogkey_key_id_t key;
    float an_average = 0;
    
    an_voltage = analogkey_read_voltage( &analogkey );
    
    if ( an_voltage > 0.2 )
    {
        an_average += an_voltage / ANALOGKEY_N_SAMPLES;
        for ( uint8_t cnt = 0; cnt < ANALOGKEY_N_SAMPLES - 1; cnt++ )
        {
            an_voltage = analogkey_read_voltage( &analogkey );
        
            an_average += an_voltage / ANALOGKEY_N_SAMPLES;
        }
    }
    
    if ( ( key = analogkey_get_key( &analogkey, an_average ) ) != ANALOGKEY_TOUCH_KEY_NONE )
    {
        log_printf( &logger, " T%u is pressed.\r\n", (uint16_t)key );
        
        while ( analogkey_read_voltage( &analogkey ) > 0.2 ) {
             Delay_ms ( 1 );   
        }
    
        log_printf( &logger, " T%u is released.\r\n", (uint16_t)key );
        Delay_ms ( 10 );
    }
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}


// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.