Intermediate
30 min

Process, move, and store information securely thanks to the SEC1210 and PIC32MZ1024EFH064

Elevate access control with smart card reading: Your key to a secure tomorrow

Smart Card 2 Click with PIC32MZ clicker

Published Oct 22, 2023

Click board™

Smart Card 2 Click

Dev Board

PIC32MZ clicker

Compiler

NECTO Studio

MCU

PIC32MZ1024EFH064

Explore the most advanced smart card reader on the market, offering unparalleled protection and ease of use

A

A

Hardware Overview

How does it work?

Smart Card 2 Click is based on the SEC1210, a high-performance single-chip Smart Card controller with a UART interface from Microchip. The SEC1210 is controlled by an enhanced integrated 8051 CPU, with all chip peripherals accessed and managed through the SFR or XDATA register space. Besides, it is fully compliant with the prevailing Smart Card standards (ISO7816, EMV, and PC/SC), keeps up with all requirements for communication bit rate, and includes support for proposed bit rates up to 826Kbps. The SEC1210 power unit is regulated and switched internally, supporting all 5V, 3V, and 1.8V Smart Cards (classes A, B, and C, respectively). The SEC1210 utilizes TrustSpan™ technology, enabling digital systems to communicate securely, process,

move, and store information. A populated onboard card holder supports data processing with 2FF smart cards. An additional connector for external connection also allows the processing of a standard 1FF card, making it ideal for electronic processes such as personal identification, access control (physical and logical access), authentication, and many more. This Click board™ communicates with MCU using the UART interface with commonly used UART RX/TX and operates at 115200 bps by default configuration to transmit and exchange data with the host MCU. The sequence activation/deactivation process itself is possible through software. Still, hardware deactivation is also supported when a card is

pulled out, whereby the required sequence is ensured regardless of software participation. In addition, Smart Card 2 Click also possesses a general Reset feature routed to the RST pin on the mikroBUS™ socket, which puts the module into a Reset state, while a yellow LED indicator labeled SRC represents a Smart Card status indicator. The blinking of this LED indicates that the Smart Card data processing is in progress. This Click board™ can operate with 3.3V and 5V MCUs, while SEC1210 uses only 5V from mikroBUS™ power rail as its primary power supply. However, the Click board™ comes equipped with a library containing functions and example code that can be used as a reference for further development.

Smart Card 2 Click hardware overview image

Features overview

Development board

PIC32MZ Clicker is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller with FPU from Microchip, a USB connector, LED indicators, buttons, a mikroProg connector, and a header for interfacing with external electronics. Thanks to its compact design with clear and easy-recognizable silkscreen markings, it provides a fluid and immersive working experience, allowing access anywhere and under

any circumstances. Each part of the PIC32MZ Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the PIC32MZ Clicker programming method, using USB HID mikroBootloader, or through an external mikroProg connector for PIC, dsPIC, or PIC32 programmer, the Clicker board also includes a clean and regulated power supply module for the development kit. The USB Micro-B connection can provide up to 500mA of current, which is more than enough to operate all onboard

and additional modules. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several buttons and LED indicators. PIC32MZ Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

PIC32MZ clicker double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

1024

Silicon Vendor

Microchip

Pin count

64

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
Reset
RE5
RST
NC
NC
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
UART TX
RB2
TX
UART RX
RB0
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Smart Card 2 Click Schematic schematic

Step by step

Project assembly

PIC32MZ clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the PIC32MZ clicker as your development board.

PIC32MZ clicker front image hardware assembly
Thermo 26 Click front image hardware assembly
Prog-cut hardware assembly
Micro B Connector clicker - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Smart Card 2 Click driver.

Key functions:

  • smartcard2_send_ccid - This function sends the CCID command message by using UART serial interface

  • smartcard2_read_ccid - This function reads a CCID response or event message by using UART serial interface

  • smartcard2_icc_power_on - This function activates the card by performing an ICC power ON command. The device will respond with a data block containing ICC ATR (Answer to Reset) message

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Smart Card 2 Click Example.
 *
 * # Description
 * This example demonstrates the use of Smart Card 2 click board by checking
 * the SIM card presence and activating the card on insert. The card should respond
 * with an ATR (Answer to Reset) message.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and enables the device.
 *
 * ## Application Task
 * Reads and parses all CCID messages received from the device. Checks the SIM card presence
 * and activates it if it's inserted. The card should respond with an ATR (Answer to Reset) message.
 * All data is being logged on the USB UART where you can track their changes.
 * 
 * @note
 * This example doesn't parse ATR messages.
 * There are some online ATR parsers which could be used for decoding those messages.
 * For example: https://smartcard-atr.apdu.fr/
 *
 * @author Stefan Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "smartcard2.h"

static smartcard2_t smartcard2;
static log_t logger;
static uint8_t icc_status = SMARTCARD2_ICC_ABSENT;

/**
 * @brief Smart Card 2 display ccid message function.
 * @details This function parses the CCID message and updates the icc_status in the end.
 * The results will be displayed on the USB UART.
 * @param[in] ccid : CCID message to be parsed.
 * See #smartcard2_ccid_t object definition for detailed explanation.
 * @return None.
 * @note None.
 */
static void smartcard2_display_ccid_message ( smartcard2_ccid_t ccid );

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    smartcard2_cfg_t smartcard2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    smartcard2_cfg_setup( &smartcard2_cfg );
    SMARTCARD2_MAP_MIKROBUS( smartcard2_cfg, MIKROBUS_1 );
    if ( UART_ERROR == smartcard2_init( &smartcard2, &smartcard2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    smartcard2_ccid_t ccid = { 0 };
    if ( SMARTCARD2_OK == smartcard2_read_ccid ( &smartcard2, &ccid ) )
    {
        smartcard2_display_ccid_message ( ccid );
    }
    if ( SMARTCARD2_ICC_PRESENT == icc_status )
    {
        log_printf( &logger, " Activating card... \r\n" );
        smartcard2_icc_power_on ( &smartcard2, SMARTCARD2_POWER_SEL_3V );
        Delay_ms ( 100 );
    }
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

static void smartcard2_display_ccid_message ( smartcard2_ccid_t ccid )
{
    log_printf( &logger, "---------------------------------\r\n" );
    switch ( ccid.type )
    {
        case SMARTCARD2_EVT_NOTIFY_SLOT_CHANGE:
        {
            log_printf( &logger, " Message type: Slot change\r\n" );
            if ( SMARTCARD2_CARD_ABSENT == ccid.payload[ 0 ] )
            {
                icc_status = SMARTCARD2_ICC_ABSENT;
            }
            else if ( SMARTCARD2_CARD_PRESENT == ccid.payload[ 0 ] )
            {
                icc_status = SMARTCARD2_ICC_PRESENT;
            }
            break;
        }
        case SMARTCARD2_CTRL_NACK:
        {
            log_printf( &logger, " Message type: NACK\r\n" );
            log_printf( &logger, " Command not acknowledged\r\n" );
            break;
        }
        case SMARTCARD2_RSP_SLOT_STATUS:
        {
            log_printf( &logger, " Message type: Slot status\r\n" );
            log_printf( &logger, " Slot number: 0x%.2X\r\n", ( uint16_t ) ccid.slot_num );
            log_printf( &logger, " Seq number: 0x%.2X\r\n", ( uint16_t ) ccid.seq_num );
            log_printf( &logger, " Status: 0x%.2X\r\n", ( uint16_t ) ccid.spec_bytes[ 0 ] );
            icc_status = ccid.spec_bytes[ 0 ] & SMARTCARD2_ICC_STATUS_MASK;
            log_printf( &logger, " Error: 0x%.2X\r\n", ( uint16_t ) ccid.spec_bytes[ 1 ] );
            log_printf( &logger, " Clock status: " );
            switch ( ccid.spec_bytes[ 2 ] )
            {
                case SMARTCARD2_CLK_STATUS_RUNNING:
                {
                    log_printf( &logger, "Running\r\n" );
                    break;
                }
                case SMARTCARD2_CLK_STATUS_STATE_L:
                {
                    log_printf( &logger, "Stoped in state L\r\n" );
                    break;
                }
                case SMARTCARD2_CLK_STATUS_STATE_H:
                {
                    log_printf( &logger, "Stoped in state H\r\n" );
                    break;
                }
                default:
                {
                    log_printf( &logger, "Unknown\r\n" );
                    break;
                }
            }
            break;
        }
        case SMARTCARD2_RSP_DATA_BLOCK:
        {
            log_printf( &logger, " Message type: Data Block\r\n" );
            log_printf( &logger, " Payload size: %lu\r\n", ccid.payload_size );
            log_printf( &logger, " Slot number: 0x%.2X\r\n", ( uint16_t ) ccid.slot_num );
            log_printf( &logger, " Seq number: 0x%.2X\r\n", ( uint16_t ) ccid.seq_num );
            log_printf( &logger, " Status: 0x%.2X\r\n", ( uint16_t ) ccid.spec_bytes[ 0 ] );
            icc_status = ccid.spec_bytes[ 0 ] & SMARTCARD2_ICC_STATUS_MASK;
            log_printf( &logger, " Error: 0x%.2X\r\n", ( uint16_t ) ccid.spec_bytes[ 1 ] );
            log_printf( &logger, " Chain parameter: 0x%.2X\r\n", ( uint16_t ) ccid.spec_bytes[ 2 ] );
            if ( ccid.payload_size )
            {
                log_printf( &logger, " Payload (ATR data as response to power on):\r\n" );
                for ( uint32_t cnt = 0; cnt < ccid.payload_size; cnt++ )
                {
                    log_printf( &logger, " %.2X", ( uint16_t ) ccid.payload[ cnt ] );
                }
                log_printf( &logger, "\r\n" );
            }
            break;
        }
        default:
        {
            log_printf( &logger, " Message type: 0x%.2X\r\n", ( uint16_t ) ccid.type );
            log_printf( &logger, " Payload size: %lu\r\n", ccid.payload_size );
            log_printf( &logger, " Slot number: 0x%.2X\r\n", ( uint16_t ) ccid.slot_num );
            log_printf( &logger, " Seq number: 0x%.2X\r\n", ( uint16_t ) ccid.seq_num );
            log_printf( &logger, " Spec bytes: 0x%.2X, 0x%.2X, 0x%.2X\r\n", ( uint16_t ) ccid.spec_bytes[ 0 ], 
                                                                            ( uint16_t ) ccid.spec_bytes[ 1 ], 
                                                                            ( uint16_t ) ccid.spec_bytes[ 2 ] );
            if ( ccid.payload_size )
            {
                log_printf( &logger, " Payload:\r\n" );
                for ( uint32_t cnt = 0; cnt < ccid.payload_size; cnt++ )
                {
                    log_printf( &logger, " 0x%.2X", ( uint16_t ) ccid.payload[ cnt ] );
                    if ( 7 == cnt % 8 )
                    {
                        log_printf( &logger, "\r\n" );
                    }
                }
                log_printf( &logger, "\r\n" );
            }
            break;
        }
    }
    if ( SMARTCARD2_ICC_ABSENT == icc_status )
    {
        log_printf( &logger, " ICC status: ABSENT\r\n" );
    }
    else if ( SMARTCARD2_ICC_PRESENT == icc_status )
    {
        log_printf( &logger, " ICC status: PRESENT\r\n" );
    }
    else if ( SMARTCARD2_ICC_ACTIVE == icc_status )
    {
        log_printf( &logger, " ICC status: ACTIVE\r\n" );
    }
    log_printf( &logger, "---------------------------------\r\n\n" );
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.