Trust in our LIN transceiver for robust real-time monitoring and control in demanding industrial environments, ensuring precision and uptime.
A
A
Hardware Overview
How does it work?
LIN Click is based on the TLE7259-3, a LIN transceiver with an integrated wake-up feature from Infineon Technologies. The TLE7259-3 operates as a bus driver between the protocol controller and the physical LIN bus designed for in-vehicle networks using data transmission rates from 2.4kbps to 20kbps. It is compliant with all LIN standards and has built-in protection features against over-voltage and overtemperature conditions and a wide operating supply range, making the TLE7259-3 ideal for various automotive applications. LIN Click communicates with MCU using the UART interface with commonly used UART RX and TX pins at 9600 bps by default configuration to transmit and exchange data with the host MCU. The transmit data stream on the TX input is converted to a LIN bus signal with an optimized slew rate, while the RX output reads back the information from the LIN bus to the MCU. The receiver also has an integrated filter network
to suppress noise on the LIN bus and increase the transceiver's EMI (Electromagnetic immunity) level. This Click board™ provides the ability to work in both Host or Peripheral mode, where selection can be performed by onboard SMD jumper labeled as MODE to an appropriate position. The TLE7259-3 also operates in three major operational modes: Stand-by, Normal, and Sleep mode, selected by the logic state of the enable pin labeled as EN and routed to the CS pin of the mikroBUS™ socket. In Normal Operation mode, the LIN bus receiver and the LIN bus transmitter are active, whereby communication occurs as usual, while in the Stand-by mode, no communication on the LIN bus is possible. Sleep mode significantly reduces the current consumption of the TLE7259-3. The LIN bus also has a wake-up event often called remote Wake-Up, a falling edge on the LIN bus followed by a specific duration, resulting in a wake-up event
that changes the operation mode from Sleep mode to Stand-by mode. Besides the remote wake-up, a wake-up of the TLE7259-3 via the WK pin routed to the PWM pin of the mikroBUS™ socket is possible, called local wake-up. This Click board™ supports an external power supply connected to the input terminal labeled as VS and should be within the range of 5.5V to 27V, suitable for both 12V and 24V board net, while the LIN bus line can be connected to the terminal labeled as BUS. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.
Features overview
Development board
Clicker 2 for Kinetis is a compact starter development board that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit ARM Cortex-M4F microcontroller, the MK64FN1M0VDC12 from NXP Semiconductors, two mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a JTAG programmer connector, and two 26-pin headers for interfacing with external electronics. Its compact design with clear and easily recognizable silkscreen markings allows you to build gadgets with unique functionalities and
features quickly. Each part of the Clicker 2 for Kinetis development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the Clicker 2 for Kinetis programming method, using a USB HID mikroBootloader or an external mikroProg connector for Kinetis programmer, the Clicker 2 board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Micro-B cable, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or
using a Li-Polymer battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, reset button, and several user-configurable buttons and LED indicators. Clicker 2 for Kinetis is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.
Microcontroller Overview
MCU Card / MCU

Architecture
ARM Cortex-M4
MCU Memory (KB)
1024
Silicon Vendor
NXP
Pin count
121
RAM (Bytes)
262144
Used MCU Pins
mikroBUS™ mapper
Take a closer look
Click board™ Schematic

Step by step
Project assembly
Track your results in real time
Application Output
1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support
Library Description
This library contains API for LIN Click driver.
Key functions:
lin_generic_write
- Generic write functionlin_generic_read
- Generic read functionlin_set_enable
- Set enable pin state.
Open Source
Code example
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.
/*!
* \file
* \brief Lin Click example
*
* # Description
* This example reads and processes data from LIN clicks.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and makes an initial log.
*
* ## Application Task
* Depending on the selected mode, it reads all the received data or sends the desired message
* every 2 seconds.
*
* ## Additional Function
* - lin_process ( ) - The general process of collecting the received data.
*
* @note
* Make sure to set the onboard Master/Slave jumpers properly and to connect and power two click
* boards according to LIN Specification 2.2A.
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "lin.h"
#include "string.h"
#define PROCESS_RX_BUFFER_SIZE 500
#define TEXT_TO_SEND "MikroE - LIN click board\r\n"
#define DEMO_APP_RECEIVER
// #define DEMO_APP_TRANSMITTER
// ------------------------------------------------------------------ VARIABLES
static lin_t lin;
static log_t logger;
// ------------------------------------------------------- ADDITIONAL FUNCTIONS
static void lin_process ( void )
{
int32_t rsp_size;
char uart_rx_buffer[ PROCESS_RX_BUFFER_SIZE ] = { 0 };
rsp_size = lin_generic_read( &lin, uart_rx_buffer, PROCESS_RX_BUFFER_SIZE );
if ( rsp_size > 0 )
{
for ( uint8_t cnt = 0; cnt < rsp_size; cnt++ )
{
log_printf( &logger, "%c", uart_rx_buffer[ cnt ] );
if ( uart_rx_buffer[ cnt ] == '\n' )
{
log_printf( &logger, "---------------------------\r\n" );
}
}
}
}
// ------------------------------------------------------ APPLICATION FUNCTIONS
void application_init ( void )
{
log_cfg_t log_cfg;
lin_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
lin_cfg_setup( &cfg );
LIN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
lin_init( &lin, &cfg );
Delay_ms ( 100 );
lin_set_enable ( &lin, 1 );
lin_set_wake_up ( &lin, 0 );
Delay_ms ( 100 );
#ifdef DEMO_APP_RECEIVER
log_info( &logger, "---- Receiver mode ----" );
#endif
#ifdef DEMO_APP_TRANSMITTER
log_info( &logger, "---- Transmitter mode ----" );
#endif
}
void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
lin_process( );
#endif
#ifdef DEMO_APP_TRANSMITTER
lin_generic_write( &lin, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
log_info( &logger, "---- Data sent ----" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END
/*!
* \file
* \brief Lin Click example
*
* # Description
* This example reads and processes data from LIN clicks.
*
* The demo application is composed of two sections :
*
* ## Application Init
* Initializes the driver and makes an initial log.
*
* ## Application Task
* Depending on the selected mode, it reads all the received data or sends the desired message
* every 2 seconds.
*
* ## Additional Function
* - lin_process ( ) - The general process of collecting the received data.
*
* @note
* Make sure to set the onboard Master/Slave jumpers properly and to connect and power two click
* boards according to LIN Specification 2.2A.
*
* \author MikroE Team
*
*/
// ------------------------------------------------------------------- INCLUDES
#include "board.h"
#include "log.h"
#include "lin.h"
#include "string.h"
#define PROCESS_RX_BUFFER_SIZE 500
#define TEXT_TO_SEND "MikroE - LIN click board\r\n"
#define DEMO_APP_RECEIVER
// #define DEMO_APP_TRANSMITTER
// ------------------------------------------------------------------ VARIABLES
static lin_t lin;
static log_t logger;
// ------------------------------------------------------- ADDITIONAL FUNCTIONS
static void lin_process ( void )
{
int32_t rsp_size;
char uart_rx_buffer[ PROCESS_RX_BUFFER_SIZE ] = { 0 };
rsp_size = lin_generic_read( &lin, uart_rx_buffer, PROCESS_RX_BUFFER_SIZE );
if ( rsp_size > 0 )
{
for ( uint8_t cnt = 0; cnt < rsp_size; cnt++ )
{
log_printf( &logger, "%c", uart_rx_buffer[ cnt ] );
if ( uart_rx_buffer[ cnt ] == '\n' )
{
log_printf( &logger, "---------------------------\r\n" );
}
}
}
}
// ------------------------------------------------------ APPLICATION FUNCTIONS
void application_init ( void )
{
log_cfg_t log_cfg;
lin_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
lin_cfg_setup( &cfg );
LIN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
lin_init( &lin, &cfg );
Delay_ms ( 100 );
lin_set_enable ( &lin, 1 );
lin_set_wake_up ( &lin, 0 );
Delay_ms ( 100 );
#ifdef DEMO_APP_RECEIVER
log_info( &logger, "---- Receiver mode ----" );
#endif
#ifdef DEMO_APP_TRANSMITTER
log_info( &logger, "---- Transmitter mode ----" );
#endif
}
void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
lin_process( );
#endif
#ifdef DEMO_APP_TRANSMITTER
lin_generic_write( &lin, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
log_info( &logger, "---- Data sent ----" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
#endif
}
int main ( void )
{
/* Do not remove this line or clock might not be set correctly. */
#ifdef PREINIT_SUPPORTED
preinit();
#endif
application_init( );
for ( ; ; )
{
application_task( );
}
return 0;
}
// ------------------------------------------------------------------------ END