Intermediate
30 min

Explore the potential of H-bridge gate driver with MC33883 and STM32F411RE

Seamless switching, ultimate control

H-Bridge Driver Click with UNI Clicker

Published Jul 25, 2023

Click board™

H-Bridge Driver Click

Dev Board

UNI Clicker

Compiler

NECTO Studio

MCU

STM32F411RE

Unlock a new era of precision, innovation, and efficiency. Add an H-bridge gate driver with an integrated charge pump and independent high and low side gate driver channels to your design!

A

A

Hardware Overview

How does it work?

H-Bridge Driver Click is based on the MC33883, an H-bridge gate driver (or full-bridge pre-driver) with an integrated charge pump and independent high and low-side driver channels from NXP Semiconductors. Gate driver outputs can source and sink up to 1.0A peak current pulses, permitting large gate-charge MOSFETs to be driven or high pulse-width modulation (PWM) frequencies to be utilized. It also supports a Sleep mode of operation with its low supply current, typical of 10μA. The VIN1 and VIN2 terminals are the power supply inputs to the device. VIN1 is used for the output high-side drivers and the charge pump, while VIN2 is used for the linear regulation. They can be connected together or with different voltage

values, with VIN1 up to 45V and VIN2 up to 28V. These pins also have undervoltage (UV) and overvoltage (OV) shutdown features. If one of the supply voltages drops below the undervoltage threshold or rises above the overvoltage threshold, the gate outputs are switched low to switch off the external MOSFETs. When the supply returns to a level above the UV threshold or below the OV threshold, the device resumes normal operation according to the established condition of the input pins. Four separate pins independently control the gate driver channels, routed to the RST, AN, PWM, and INT pins of the mikroBUS™ socket. Those pins allow the device to be optionally configured as two independent high-side gate

drivers and two independent low-side gate drivers. In addition, it also has a pin used to place the device in Sleep mode. When the GEN pin, routed to the CS pin of the mikroBUS™ socket, is in a logic low state, the device is in Sleep mode; otherwise, it is fully operational. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

H-Bridge Driver Click hardware overview image

Features overview

Development board

UNI Clicker is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It supports a wide range of microcontrollers, such as different ARM, PIC32, dsPIC, PIC, and AVR from various vendors like Microchip, ST, NXP, and TI (regardless of their number of pins), four mikroBUS™ sockets for Click board™ connectivity, a USB connector, LED indicators, buttons, a debugger/programmer connector, and two 26-pin headers for interfacing with external electronics. Thanks to innovative manufacturing technology, it allows you to build

gadgets with unique functionalities and features quickly. Each part of the UNI Clicker development kit contains the components necessary for the most efficient operation of the same board. In addition to the possibility of choosing the UNI Clicker programming method, using a third-party programmer or CODEGRIP/mikroProg connected to onboard JTAG/SWD header, the UNI Clicker board also includes a clean and regulated power supply module for the development kit. It provides two ways of board-powering; through the USB Type-C (USB-C) connector, where onboard voltage regulators provide the appropriate voltage levels to each component on the board, or using a Li-Po/Li

Ion battery via an onboard battery connector. All communication methods that mikroBUS™ itself supports are on this board (plus USB HOST/DEVICE), including the well-established mikroBUS™ socket, a standardized socket for the MCU card (SiBRAIN standard), and several user-configurable buttons and LED indicators. UNI Clicker is an integral part of the Mikroe ecosystem, allowing you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

UNI clicker double image

Microcontroller Overview

MCU Card / MCU

default

Type

8th Generation

Architecture

ARM Cortex-M4

MCU Memory (KB)

512

Silicon Vendor

STMicroelectronics

Pin count

64

RAM (Bytes)

131072

You complete me!

Accessories

H-Bridge MOSFET board represents an easy-to-use adapter board that allows the user to exercise all the functions of the H-Bridge Driver Click board™. This board has five 5.08mm pitch screw terminals to connect power and loads easily. Three of them on the left side of the board are suitable for a target H-Bridge Driver Click board™ connection with appropriate high and low side gate drive channels used to control the outputs or functions inside the circuit. The first VIN terminal on the upper-left board side represents the PSMN019-100YLX MOSFET’s power supply connector, allowing an operating voltage range like the connected H-Bridge Driver Click board™. On the right side of the board, the OUT terminal is used to drive a load, such as a brushed DC motor. This board also provides two LED indicators labeled REVERSE and FORWARD to indicate when output operates reverse or forward.

H-Bridge Driver Click accessories image

DC Gear Motor - 430RPM (3-6V) represents an all-in-one combination of a motor and gearbox, where the addition of gear leads to a reduction of motor speed while increasing the torque output. This gear motor has a spur gearbox, making it a highly reliable solution for applications with lower torque and speed requirements. The most critical parameters for gear motors are speed, torque, and efficiency, which are, in this case, 520RPM with no load and 430RPM at maximum efficiency, alongside a current of 60mA and a torque of 50g.cm. Rated for a 3-6V operational voltage range and clockwise/counterclockwise rotation direction, this motor represents an excellent solution for many functions initially performed by brushed DC motors in robotics, medical equipment, electric door locks, and much more.

H-Bridge Driver Click accessories 2 image

Used MCU Pins

mikroBUS™ mapper

Input Low Side 2
PB0
AN
Input High Side 2
PC13
RST
Global Enable
PA4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Input Low Side 1
PA1
PWM
Input High Side 1
PB13
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

H-Bridge Driver Click Schematic schematic

Step by step

Project assembly

UNI Clicker front image hardware assembly

Start by selecting your development board and Click board™. Begin with the UNI Clicker as your development board.

UNI Clicker front image hardware assembly
GNSS2 Click front image hardware assembly
SiBRAIN for STM32F745VG front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
UNI Clicker Access MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Necto image step 7 hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

After loading the code example, pressing the "DEBUG" button builds and programs it on the selected setup.

Application Output Step 1

After programming is completed, a header with buttons for various actions available in the IDE appears. By clicking the green "PLAY "button, we start reading the results achieved with Click board™.

Application Output Step 3

Upon completion of programming, the Application Output tab is automatically opened, where the achieved result can be read. In case of an inability to perform the Debug function, check if a proper connection between the MCU used by the setup and the CODEGRIP programmer has been established. A detailed explanation of the CODEGRIP-board connection can be found in the CODEGRIP User Manual. Please find it in the RESOURCES section.

Application Output Step 4

Software Support

Library Description

This library contains API for H-Bridge Driver Click driver.

Key functions:

  • hbridgedriver_glo_enable - Global enable function

  • hbridgedriver_reverse - H-Bridge mode reverse function

  • hbridgedriver_forward - H-Bridge mode forward function

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief H-Bridge Driver Click Example.
 *
 * # Description
 * This is an example that demonstrates the use of the H-Bridge Driver Click board.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes GPIO and LOG structures, and sets AN, RST, CS, PWM and 
 * INT pins as output and start to write log.
 *
 * ## Application Task
 * Demonstrates use of the H-Bridge Driver click board by turning connected MOSFETs 
 * gates high or low in order to drive the motor forward, in reverse, brake or coast.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "hbridgedriver.h"

static hbridgedriver_t hbridgedriver;   /**< H-Bridge Driver Click driver object. */
static log_t logger;    /**< Logger object. */

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridgedriver_cfg_t hbridgedriver_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridgedriver_cfg_setup( &hbridgedriver_cfg );
    HBRIDGEDRIVER_MAP_MIKROBUS( hbridgedriver_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == hbridgedriver_init( &hbridgedriver, &hbridgedriver_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    hbridgedriver_glo_enable( &hbridgedriver, HBRIDGEDRIVER_PROP_EN );
    Delay_ms( 100 );
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    log_printf( &logger, " The motor turns forward! \r\n" );
    hbridgedriver_forward( &hbridgedriver );
    Delay_ms( 3000 );
    log_printf( &logger, " The motor brakes! \r\n" );
    hbridgedriver_braking( &hbridgedriver );
    Delay_ms( 3000 );
    log_printf( &logger, " The motor turns in reverse \r\n" );
    hbridgedriver_reverse( &hbridgedriver );
    Delay_ms( 3000 );
    log_printf( &logger, " The motor coasting \r\n" );
    hbridgedriver_coasting( &hbridgedriver );
    Delay_ms( 3000 );
}

void main ( void ) 
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources