Intermediate
30 min

Experience the efficiency of our 4-20mA current loop solution with DAC161S997 and PIC32MZ2048EFH100

Enhance your process automation

4-20mA T 2 Click with Flip&Click PIC32MZ

Published Aug 09, 2023

Click board™

4-20mA T 2 Click

Dev. board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Experience precise signal transmission with our advanced analog current loop transmitter, which provides seamless connectivity and compatibility with various industrial applications

A

A

Hardware Overview

How does it work?

4-20mA T 2 Click is based on the DAC161S997, a low-power 16-bit ΣΔ digital-to-analog converter (DAC) from Texas Instruments, realized as a ΣΔ modulator. Next to ΣΔ DAC, the DAC161S997 also contains an internal ultra-low power voltage reference and an internal oscillator to reduce power and component count in compact loop-powered applications. This architecture, where DAC's output current represents a multiplied copy of the filtered modulator output, ensures an excellent linearity performance while minimizing the device's power consumption. In addition to an industry-standard 4-20 mA current loop over the LOOP terminal, the DAC161S997 also has the possibility of a simple Highway Addressable

Remote Transducer (HART) modulator interfacing through an onboard HART TX terminal. It allows the injection of FSK-modulated digital data into the 4-20mA current loop. This Click board™ communicates with MCU using a 4-wire SPI serial interface with a maximum frequency of 10MHz, for data transfer and configuration of the DAC functions. The DAC161S997 supports both Mode 0 and Mode 3 of the SPI protocol. 4-20mA T 2 Click comes with an additional feature, as an interrupt, available on the ERR pin of the mikroBUS™ socket, the loop-error detection/reporting feature. By default, the DAC161S997 detects and reports several types of errors: loop error, SPI timeout error (channel error), frame error, and alarm current. In

the case of a fault condition or during the initial Power-Up sequence, the DAC161S997 will output current in either the upper or lower error current band. The band's choice is user-selectable via the appropriate position of an onboard jumper ERRL SEL, while the current error value is programmable through the SPI interface. This Click board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. Also, it comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.

4-20mA T 2 Click hardware overview image

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
RA0
CS
SPI Clock
RG6
SCK
SPI Data OUT
RC4
MISO
SPI Data IN
RB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
Loop-Error Interrupt
RD9
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

4-20mA T 2 Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for 4-20mA T 2 Click driver.

Key functions:

  • c420mat2_set_output_current - 4-20mA T 2 set output current function

  • c420mat2_get_status - 4-20mA T 2 set status function

  • c420mat2_set_lower_limit - 4-20mA T 2 set lower limit function

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief 4-20mA T 2 Click example
 *
 * # Description
 * This example demonstrates the use of 4-20mA T 2 Click board™.
 * This driver provides functions to configure 
 * analog output current transfer over an industry standard 4-20mA current loop.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initialization of SPI module and log UART.
 * After driver initialization, default settings turn on the device.
 *
 * ## Application Task
 * This example demonstrates the use of the 4-20mA T 2 Click board™.
 * This example periodically changes the analog output current transfer 
 * from 4mA to 20mA and display status every 5 seconds.
 * Results are being sent to the UART Terminal, where you can track their changes.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "c420mat2.h"

static c420mat2_t c420mat2;
static log_t logger;
static c420mat2_status_t status;

void display_status ( void )
{
    log_printf( &logger, " Status: \r\n" );
    if ( C420MAT2_STATUS_ERROR == status.ferr_sts )
    {
        log_printf( &logger, " - A frame error has occurred.\r\n" );
    }
    else
    {
        log_printf( &logger, " - No frame error occurred.\r\n" );
    }

    if ( C420MAT2_STATUS_ERROR == status.spi_timeout_err )
    {
        log_printf( &logger, " - The SPI interface has not received a valid command.\r\n" );
    }
    else
    {
        log_printf( &logger, " - The SPI interface has received a valid command.\r\n" );
    }

    if ( C420MAT2_STATUS_ERROR == status.loop_sts )
    {
        log_printf( &logger, " - A status loop error has occurred.\r\n" );
    }
    else
    {
        log_printf( &logger, " - No status loop error has occurred.\r\n" );
    }

    if ( C420MAT2_STATUS_ERROR == status.curr_loop_sts )
    {
        log_printf( &logger, " - A current loop error is occurring.\r\n" );
    }
    else
    {
        log_printf( &logger, " - No current loop error is occurring.\r\n" );
    }
    log_printf( &logger, " ----------------------------\r\n" );
}

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c420mat2_cfg_t c420mat2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c420mat2_cfg_setup( &c420mat2_cfg );
    C420MAT2_MAP_MIKROBUS( c420mat2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == c420mat2_init( &c420mat2, &c420mat2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( C420MAT2_ERROR == c420mat2_default_cfg ( &c420mat2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, " -----------------------------\r\n" );
    Delay_ms( 100 );
}

void application_task ( void )
{
    if ( C420MAT2_OK == c420mat2_set_output_current( &c420mat2, 4.0 ) )
    {
        log_printf( &logger, " Loop Current:  4.0 mA \r\n" );
        log_printf( &logger, " - - - - - - - - - - - - - - -\r\n" );
        if ( C420MAT2_OK == c420mat2_get_status ( &c420mat2, &status ) )
        {
            display_status( );    
        }
        Delay_ms( 5000 );
    }

    if ( C420MAT2_OK == c420mat2_set_output_current( &c420mat2, 10.0 ) )
    {
        log_printf( &logger, " Loop Current: 10.0 mA \r\n" );
        log_printf( &logger, " - - - - - - - - - - - - - - -\r\n" );
        if ( C420MAT2_OK == c420mat2_get_status ( &c420mat2, &status ) )
        {
            display_status( );    
        }
        Delay_ms( 5000 );
    }

    if ( C420MAT2_OK == c420mat2_set_output_current( &c420mat2, 15.0 ) )
    {
        log_printf( &logger, " Loop Current: 15.0 mA \r\n" );
        log_printf( &logger, " - - - - - - - - - - - - - - -\r\n" );
        if ( C420MAT2_OK == c420mat2_get_status ( &c420mat2, &status ) )
        {
            display_status( );    
        }
        Delay_ms( 5000 );
    }

    if ( C420MAT2_OK == c420mat2_set_output_current( &c420mat2, 20.0 ) )
    {
        log_printf( &logger, " Loop Current: 20.0 mA \r\n" );
        log_printf( &logger, " - - - - - - - - - - - - - - -\r\n" );
        if ( C420MAT2_OK == c420mat2_get_status ( &c420mat2, &status ) )
        {
            display_status( );    
        }
        Delay_ms( 5000 );
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.