Beginner
10 min

Control the speed and direction of the brushed DC motors with DRV8833 and PIC32MZ2048EFH100

Switch the motor ON or OFF and manage its direction using simple digital signals

DC MOTOR Click with Flip&Click PIC32MZ

Published Jun 02, 2023

Click board™

DC MOTOR Click

Dev Board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Compact, user-friendly solution for controlling brushed DC motors with minimal fuss and maximum reliability

A

A

Hardware Overview

How does it work?

DC MOTOR Click is based on the DRV8833, an H-bridge motor driver with current-control PWM circuitry from Texas Instruments. The DRV8833 has two integrated H-bridges connected in parallel for double the current of a single H-bridge rated for an operating voltage range from 3V to 10V. The output driver block of the DRV8833 consists of N-channel power MOSFETs configured as an H-bridge to drive the motor windings, where each H-bridge includes circuitry to regulate or limit the winding current. Thanks to the current sense resistors R2 and R5 of 220mΩ, the driving current is limited to 0.9A. In addition, the 74HC4053 is also incorporated into the design to run the motor with only one PWM line from the mikroBUS™ socket. Thanks to this multiplexer, in combination with the selection pins

SL1 and SL2, routed to the RST and CS pins of the mikroBUS™ socket, control of the DRV8833 driver as well as management of its operating modes (Coast/Fast Decay, Reverse, Forward, Brake/Slow Decay) is enabled. This mux can also be used for PWM control of the motor speed. The DRV8833 also has a complete set of diagnostic and protection capabilities that support robust and reliable operation, like over-current protection, short circuit protection, undervoltage lockout, and overtemperature. In any case, the user can also visually detect them, in addition to the FLT pin, through the red LED marked with FAULT. It is also possible to set the driver in low-power Sleep mode via the SLP pin routed to the AN pin of the mikroBUS™ socket. In this state, the H-bridges are

disabled, the gate drive charge pump is stopped, all internal logic is reset, and all internal clocks are stopped. This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the PWR SEL jumper. It allows both 3.3V and 5V capable MCUs to use the communication lines properly. Additionally, there is a possibility for the DRV8833 power supply selection via jumper labeled as MOTOR PWR to supply the DRV8833 from an external power supply terminal from 3V to 10V or from mikroBUS™ power rails. However, the Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

DC Motor Click hardware overview image

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

You complete me!

Accessories

DC Gear Motor - 430RPM (3-6V) represents an all-in-one combination of a motor and gearbox, where the addition of gear leads to a reduction of motor speed while increasing the torque output. This gear motor has a spur gearbox, making it a highly reliable solution for applications with lower torque and speed requirements. The most critical parameters for gear motors are speed, torque, and efficiency, which are, in this case, 520RPM with no load and 430RPM at maximum efficiency, alongside a current of 60mA and a torque of 50g.cm. Rated for a 3-6V operational voltage range and clockwise/counterclockwise rotation direction, this motor represents an excellent solution for many functions initially performed by brushed DC motors in robotics, medical equipment, electric door locks, and much more.

DC MOTOR Click accessories image

Used MCU Pins

mikroBUS™ mapper

Sleep Mode
RB11
AN
Control Pin 1
RE2
RST
Control Pin 2
RA0
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
PWM Signal
RC14
PWM
Fault Detection
RD9
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

DC MOTOR Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for DC MOTOR Click driver.

Key functions:

  • dcmotor_pwm_start - Start PWM module.

  • dcmotor_enable - Enable the motor function.

  • dcmotor_sleep_mode - Set sleep mode function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief DcMotor Click example
 * 
 * # Description
 * This application change the speed and direction of DC Motor.
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * Initialization driver enable's - GPIO,
 * PWM initialization, set PWM duty cycle and PWM frequency, enable the motor, start PWM and start write log.
 * 
 * ## Application Task  
 * This is a example which demonstrates the use of DC Motor Click board.
 * DC Motor Click communicates with register via PWM interface.
 * It shows moving in the left direction from slow to fast speed
 * and from fast to slow speed.
 * Results are being sent to the Usart Terminal where you can track their changes.
 * 
 * \author Nikola Peric
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "dcmotor.h"

// ------------------------------------------------------------------ VARIABLES

static dcmotor_t dcmotor;
static log_t logger;
uint8_t dcmotor_direction = 1;

void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor_cfg_setup( &cfg );
    DCMOTOR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor_init( &dcmotor, &cfg );

    log_printf( &logger, " Initialization  PWM \r\n" );
    
    dcmotor_set_duty_cycle ( &dcmotor, 0.0 );
    dcmotor_pwm_start( &dcmotor );
    log_printf( &logger, "---------------------\r\n" );
}

void application_task ( )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    if ( dcmotor_direction == 1 )
    {
        dcmotor_sleep_mode ( &dcmotor );
        dcmotor_right_direction_slow ( &dcmotor );
        log_printf( &logger, "> CLOCKWISE <\r\n" );
        dcmotor_enable ( &dcmotor );
    }
    else
    {
        dcmotor_sleep_mode ( &dcmotor );
        dcmotor_left_direction_slow ( &dcmotor );
        log_printf( &logger, "> COUNTER CLOCKWISE <\r\n" );
        dcmotor_enable ( &dcmotor );
    }

    dcmotor_set_duty_cycle ( &dcmotor, duty );
    Delay_ms( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
        
        if ( dcmotor_direction == 1 )
        {
            dcmotor_direction = 0;
        }
        else if ( dcmotor_direction == 0 )
        {
            dcmotor_direction = 1;
        }
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;

}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.