Intermediate
30 min

Enhance your designs with the next level of precision with MCP41HV51 and PIC32MZ2048EFH100

Code your resistance

DIGI POT 6 Click with Flip&Click PIC32MZ

Published Aug 21, 2023

Click board™

DIGI POT 6 Click

Dev Board

Flip&Click PIC32MZ

Compiler

NECTO Studio

MCU

PIC32MZ2048EFH100

Seamlessly bridge analog and digital realms using our digital potentiometer technology, harmonizing control and responsiveness for superior outcomes

A

A

Hardware Overview

How does it work?

DIGI POT 6 Click is based on the MCP41HV51, 8-bit dual power rails digital potentiometer with SPI serial interface and volatile memory from Microchip. It has a wide operating voltage range, analog from 10 to 36V and digital from 2.7 to 5.5V, or is implemented as a dual-rail (±18V) for systems requiring wide signal swing or high power-supply voltages. It supports resistor configurations of 255 resistors and 256 steps and high terminal/wiper current, including the ability to sink/source up to 25mA on all terminal pins for driving larger loads. The resistor network of the MCP41HV51 has an 8-bit resolution where each resistor network allows

Zero-Scale to Full-Scale connections. All these features, combined with an extended temperature range, make the MCP41HV51 well-suited for a broad range of high-voltage and high-temperature applications, including those in the industrial, automotive, and audio markets. DIGI POT 6 click communicates with MCU using the SPI serial interface with a maximum frequency 10MHz and supports the two most common SPI modes, 0 and 3. This Click board™ also has three terminals labeled P0A, P0B, and P0W, with an internal architecture comprising various resistances and switches. The resistance between

terminals A and B, RAB, commonly called the “end-to-end” resistance, provides RAB resistance options up to 100 kΩ. In contrast, the wiper terminal, P0W, is digitally programmable to access any 2n tap points on the resistor string. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used, as a reference, for further development.

DIGI POT 6 Click hardware overview image

Features overview

Development board

Flip&Click PIC32MZ is a compact development board designed as a complete solution that brings the flexibility of add-on Click boards™ to your favorite microcontroller, making it a perfect starter kit for implementing your ideas. It comes with an onboard 32-bit PIC32MZ microcontroller, the PIC32MZ2048EFH100 from Microchip, four mikroBUS™ sockets for Click board™ connectivity, two USB connectors, LED indicators, buttons, debugger/programmer connectors, and two headers compatible with Arduino-UNO pinout. Thanks to innovative manufacturing technology,

it allows you to build gadgets with unique functionalities and features quickly. Each part of the Flip&Click PIC32MZ development kit contains the components necessary for the most efficient operation of the same board. In addition, there is the possibility of choosing the Flip&Click PIC32MZ programming method, using the chipKIT bootloader (Arduino-style development environment) or our USB HID bootloader using mikroC, mikroBasic, and mikroPascal for PIC32. This kit includes a clean and regulated power supply block through the USB Type-C (USB-C) connector. All communication

methods that mikroBUS™ itself supports are on this board, including the well-established mikroBUS™ socket, user-configurable buttons, and LED indicators. Flip&Click PIC32MZ development kit allows you to create a new application in minutes. Natively supported by Mikroe software tools, it covers many aspects of prototyping thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

Flip&Click PIC32MZ double image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

NC
NC
AN
NC
NC
RST
SPI Chip Select
RA0
CS
SPI Clock
RG6
SCK
SPI Data OUT
RC4
MISO
SPI Data IN
RB5
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
NC
NC
PWM
NC
NC
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

DIGI POT 6 Click Schematic schematic

Step by step

Project assembly

Flip&Click PIC32MZ front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Flip&Click PIC32MZ as your development board.

Flip&Click PIC32MZ front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Flip&Click PIC32MZ MB1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Flip&Click PIC32MZ MCU step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.

Software Support

Library Description

This library contains API for DIGI POT 6 Click driver.

Key functions:

  • digipot6_read_data - This function reads data from the specified register address

  • digipot6_write_wiper_cmd - This function writes a wiper configuration command to the click module

  • digipot6_set_resistor - This function reads data from the specified register address

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * \file 
 * \brief DIGIPOT6 Click example
 * 
 * # Description
 * This example showcases how to initialize, configure and use the DIGI POT 6 click module. The
 * click is a digital potentiometer. The potentiometer has a programmable wiper which controls 
 * the resistance between P0W-POA and POW-POB. An external power supply is required for this example.  
 *
 * The demo application is composed of two sections :
 * 
 * ## Application Init 
 * This function initializes and configures the logger and click modules. This function also sets
 * the click default configuration.
 * 
 * ## Application Task  
 * This function programs the wiper position and shows the current wiper position in the UART
 * console every second.
 * 
 * \author MikroE Team
 *
 */
// ------------------------------------------------------------------- INCLUDES

#include "board.h"
#include "log.h"
#include "digipot6.h"

// ------------------------------------------------------------------ VARIABLES

static digipot6_t digipot6;
static log_t logger;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    digipot6_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    digipot6_cfg_setup( &cfg );
    DIGIPOT6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    digipot6_init( &digipot6, &cfg );
    Delay_100ms( );
    digipot6_default_cfg( &digipot6 );
    Delay_100ms( );
}

void application_task ( void )
{
    uint8_t wiper;
    uint16_t cnt;
    
    for ( cnt = 0; cnt <= 255; cnt += 15 )
    {
        digipot6_write_data( &digipot6, DIGIPOT6_VOLATILE_WIPER_0, cnt );
        Delay_ms( 10 );

        wiper = digipot6_read_data( &digipot6, DIGIPOT6_VOLATILE_WIPER_0 );

        log_printf( &logger, " * Wiper position: %u *\r\n", ( uint16_t ) wiper );
        Delay_ms( 1000 );
    }
}

void main ( void )
{
    application_init( );

    for ( ; ; )
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.