Beginner
10 min

Achieve optimal heat management of electronic systems with DRV8213 motor driver, MF25060V2-1000U-A99 cooling fan, and PIC32MZ2048EFM100

Compact cooling solution for managing heat in electronic systems

Cooler Click with Curiosity PIC32 MZ EF

Published May 07, 2024

Click board™

Cooler Click

Dev Board

Curiosity PIC32 MZ EF

Compiler

NECTO Studio

MCU

PIC32MZ2048EFM100

Stop electronics overheating! Add efficient cooling with this mini air conditioner.

A

A

Hardware Overview

How does it work?

Cooler Click is based on the DRV8213, an advanced brushless DC motor driver from Texas Instruments, as its core component. This innovative board integrates a miniature temperature sensor, TMP007, and a cooling fan, MF25060V2-1000U-A99, right on its surface, making it a ready-to-go cooling solution. It's perfectly suited for use in environments prone to overheating, such as server rack cooling, embedded systems and IoT devices, development board prototyping, gaming consoles and PC cooling, automotive electronics, medical equipment cooling, or similar applications, where continuous cooling is essential. The DRV8213 is a comprehensive motor driver featuring an integrated full-bridge driver with current sensing and regulation capabilities and a unique current sense output. It's designed for efficiency, using a 2-pin PWM interface for motor speed control through the

IN1 and IN2 pins on the mikroBUS™ socket, covering a wide PWM frequency range from 0 to 100kHz. Notably, its auto-sleep mode reduces the need for additional GPIO connections for sleep or turn-off functions by automatically entering a low-power mode when not in use. The DRV8213 is also enriched with several protection features, such as undervoltage lockout, overcurrent protection, and overtemperature shutdown, ensuring reliable operation under various conditions. The TMP007 sensor, another onboard component from Texas Instruments, employs infrared thermopile technology to measure temperatures without direct contact with the object. This capability accurately monitors the surrounding temperature where the Click board™ is placed. The sensor's output is digitized and processed along with the die temperature to compute the object temperature. It

uses an I2C interface for communication with the host MCU and an alert function via the ALR pin of the mikroBUS™ socket for temperature exceedance notifications. Complementing these components is the MF25060V2-1000U-A99 fan, a high-performance cooling fan operating on a 5VDC supply capable of reaching speeds up to 10,000 RPM. This fan is essential for dissipating heat efficiently, ensuring the system remains cool under operation. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

Cooler Click hardware overview image

Features overview

Development board

Curiosity PIC32 MZ EF development board is a fully integrated 32-bit development platform featuring the high-performance PIC32MZ EF Series (PIC32MZ2048EFM) that has a 2MB Flash, 512KB RAM, integrated FPU, Crypto accelerator, and excellent connectivity options. It includes an integrated programmer and debugger, requiring no additional hardware. Users can expand

functionality through MIKROE mikroBUS™ Click™ adapter boards, add Ethernet connectivity with the Microchip PHY daughter board, add WiFi connectivity capability using the Microchip expansions boards, and add audio input and output capability with Microchip audio daughter boards. These boards are fully integrated into PIC32’s powerful software framework, MPLAB Harmony,

which provides a flexible and modular interface to application development a rich set of inter-operable software stacks (TCP-IP, USB), and easy-to-use features. The Curiosity PIC32 MZ EF development board offers expansion capabilities making it an excellent choice for a rapid prototyping board in Connectivity, IOT, and general-purpose applications.

Curiosity PIC32MZ EF double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

Used MCU Pins

mikroBUS™ mapper

Current Monitor
RPB4
AN
Fan Driver Control 2
RA9
RST
ID COMM
RPD4
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Fan Driver Control 1
RPE8
PWM
Alert Interrupt
RF13
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RPA14
SCL
I2C Data
RPA15
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Schematic

Cooler Click Schematic schematic

Step by step

Project assembly

Curiosity PIC32MZ EF front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity PIC32 MZ EF as your development board.

Curiosity PIC32MZ EF front image hardware assembly
Thermo 28 Click front image hardware assembly
Prog-cut hardware assembly
Curiosity PIC32 MZ EF MB 1 - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Curiosity PIC32 MZ EF MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output via Debug Mode

1. Once the code example is loaded, pressing the "DEBUG" button initiates the build process, programs it on the created setup, and enters Debug mode.

2. After the programming is completed, a header with buttons for various actions within the IDE becomes visible. Clicking the green "PLAY" button starts reading the results achieved with the Click board™. The achieved results are displayed in the Application Output tab.

DEBUG_Application_Output

Software Support

Library Description

This library contains API for Cooler Click driver.

Key functions:

  • cooler_get_object_temperature - This function reads the object's temperature data in degrees Celsius.

  • cooler_set_out_state - This function controls the operation of the cooler - on/off.

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief Cooler Click Example.
 *
 * # Description
 * This example demonstrates the use of the Cooler click board 
 * by reading the target object temperature and controlling the cooler.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * The initialization of the I2C module, log UART, and additional pins.
 * After the driver init, the app executes a default configuration.
 *
 * ## Application Task
 * The demo application measures the temperature of the target object in degrees Celsius 
 * and enables a cooler if the temperature exceeds the temperature high limit value.
 * Results are being sent to the UART Terminal, where you can track their changes.
 *
 * @author Nenad Filipovic
 *
 */

#include "board.h"
#include "log.h"
#include "cooler.h"

// Object temperature high limit
#define COOLER_TEMP_HIGH_LIMIT    30.0

static cooler_t cooler;   /**< Cooler Click driver object. */
static log_t logger;    /**< Logger object. */

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    cooler_cfg_t cooler_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    cooler_cfg_setup( &cooler_cfg );
    COOLER_MAP_MIKROBUS( cooler_cfg, MIKROBUS_1 );
    err_t init_flag = cooler_init( &cooler, &cooler_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( COOLER_ERROR == cooler_default_cfg ( &cooler ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void ) 
{
    float temperature = 0;
    if ( COOLER_OK == cooler_get_object_temperature( &cooler, &temperature ) )
    {
        log_printf( &logger, " Temperature: %.2f degC\r\n", temperature );
        log_printf( &logger, " Cooler: " );
        if ( COOLER_TEMP_HIGH_LIMIT < temperature )
        {
            if ( COOLER_OK == cooler_set_out_state( &cooler, COOLER_ENABLE ) )
            {
                log_printf( &logger, " Enabled.\r\n\n" );
            }
        }
        else
        {
            if ( COOLER_OK == cooler_set_out_state( &cooler, COOLER_DISABLE ) )
            {
                log_printf( &logger, " Disabled.\r\n\n" );
            }
        }
    }
    Delay_ms ( 1000 );
}

int main ( void ) 
{
    /* Do not remove this line or clock might not be set correctly. */
    #ifdef PREINIT_SUPPORTED
    preinit();
    #endif
    
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.