Beginner
10 min

Control different types of brushed motors with DRV8873 and PIC32MZ2048EFM100

Simplify the process of making things move in electronic systems

H-Bridge 14 Click with Curiosity PIC32 MZ EF

Published Dec 10, 2023

Click board™

H-Bridge 14 Click

Dev. board

Curiosity PIC32 MZ EF

Compiler

NECTO Studio

MCU

PIC32MZ2048EFM100

Optimize motor control in electronic systems and unlock the flexibility to drive various motor types and other loads

A

A

Hardware Overview

How does it work?

H-Bridge 14 Click is based on the DRV8873, an automotive H-Bridge motor driver from Texas Instruments. It uses two logic inputs to control the H-Bridge driver, which consists of four N-channel MOSFETs. Those MOSFETs drive motors bi-directionally with up to 10A peak current. The motor has a configurable motor interface, a PH/EN or PWM, and an independent half-bridge control. The selection can be made over the software and the host MCU. The motor driver integrates current sensing and features proportional current output. It also features protections such as VM

under-voltage lockout, charge pump undervoltage, overcurrent protection, open load detection, thermal shutdown, fault conditions, and more. The power supply for the motor can be selected between the external and the 5V from the mikroBUS™ power rail. H-Bridge 14 Click uses a standard 4-wire SPI serial interface to communicate with the host MCU. Two control inputs are labeled IN1 and IN2. The onboard PCA9538 8-bit I/O port from NXP controls the sleep and bridge disable inputs. It also monitors the fault indication pin of the motor driver and

interrupts the host MCU over the INT pin. The I2C address of the PCA9538 can be set over the ADDR SEL jumper. This I/O port can be reset over the RST pin. This Click board™ can operate with either 3.3V or 5V logic voltage levels selected via the VCC SEL jumper. This way, both 3.3V and 5V capable MCUs can use the communication lines properly. Also, this Click board™ comes equipped with a library containing easy-to-use functions and an example code that can be used as a reference for further development.

H-Bridge 14 Click hardware overview image

Features overview

Development board

Curiosity PIC32 MZ EF development board is a fully integrated 32-bit development platform featuring the high-performance PIC32MZ EF Series (PIC32MZ2048EFM) that has a 2MB Flash, 512KB RAM, integrated FPU, Crypto accelerator, and excellent connectivity options. It includes an integrated programmer and debugger, requiring no additional hardware. Users can expand

functionality through MIKROE mikroBUS™ Click™ adapter boards, add Ethernet connectivity with the Microchip PHY daughter board, add WiFi connectivity capability using the Microchip expansions boards, and add audio input and output capability with Microchip audio daughter boards. These boards are fully integrated into PIC32’s powerful software framework, MPLAB Harmony,

which provides a flexible and modular interface to application development a rich set of inter-operable software stacks (TCP-IP, USB), and easy-to-use features. The Curiosity PIC32 MZ EF development board offers expansion capabilities making it an excellent choice for a rapid prototyping board in Connectivity, IOT, and general-purpose applications.

Curiosity PIC32MZ EF double side image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC32

MCU Memory (KB)

2048

Silicon Vendor

Microchip

Pin count

100

RAM (Bytes)

524288

You complete me!

Accessories

DC Gear Motor - 430RPM (3-6V) represents an all-in-one combination of a motor and gearbox, where the addition of gear leads to a reduction of motor speed while increasing the torque output. This gear motor has a spur gearbox, making it a highly reliable solution for applications with lower torque and speed requirements. The most critical parameters for gear motors are speed, torque, and efficiency, which are, in this case, 520RPM with no load and 430RPM at maximum efficiency, alongside a current of 60mA and a torque of 50g.cm. Rated for a 3-6V operational voltage range and clockwise/counterclockwise rotation direction, this motor represents an excellent solution for many functions initially performed by brushed DC motors in robotics, medical equipment, electric door locks, and much more.

H-Bridge 14 Click accessories image

Used MCU Pins

mikroBUS™ mapper

Driver Control
RPB4
AN
Reset / ID SEL
RA9
RST
SPI Select / ID COMM
RPD4
CS
SPI Clock
RPD1
SCK
SPI Data OUT
RPD14
MISO
SPI Data IN
RPD3
MOSI
Power Supply
3.3V
3.3V
Ground
GND
GND
Driver Control
RPE8
PWM
Interrupt
RF13
INT
NC
NC
TX
NC
NC
RX
I2C Clock
RPA14
SCL
I2C Data
RPA15
SDA
Power Supply
5V
5V
Ground
GND
GND
1

Take a closer look

Click board™ Schematic

H-Bridge 14 Click Schematic schematic

Step by step

Project assembly

Curiosity PIC32MZ EF front image hardware assembly

Start by selecting your development board and Click board™. Begin with the Curiosity PIC32 MZ EF as your development board.

Curiosity PIC32MZ EF front image hardware assembly
GNSS2 Click front image hardware assembly
Prog-cut hardware assembly
GNSS2 Click complete accessories setup image hardware assembly
Curiosity PIC32 MZ EF MB 1 Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
Necto image step 5 hardware assembly
Necto image step 6 hardware assembly
Curiosity PIC32 MZ EF MCU Step hardware assembly
Necto No Display image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Debug Image Necto Step hardware assembly

Track your results in real time

Application Output

1. Application Output - In Debug mode, the 'Application Output' window enables real-time data monitoring, offering direct insight into execution results. Ensure proper data display by configuring the environment correctly using the provided tutorial.

2. UART Terminal - Use the UART Terminal to monitor data transmission via a USB to UART converter, allowing direct communication between the Click board™ and your development system. Configure the baud rate and other serial settings according to your project's requirements to ensure proper functionality. For step-by-step setup instructions, refer to the provided tutorial.

3. Plot Output - The Plot feature offers a powerful way to visualize real-time sensor data, enabling trend analysis, debugging, and comparison of multiple data points. To set it up correctly, follow the provided tutorial, which includes a step-by-step example of using the Plot feature to display Click board™ readings. To use the Plot feature in your code, use the function: plot(*insert_graph_name*, variable_name);. This is a general format, and it is up to the user to replace 'insert_graph_name' with the actual graph name and 'variable_name' with the parameter to be displayed.

Software Support

Library Description

This library contains API for H-Bridge 14 Click driver.

Key functions:

  • hbridge14_set_pins - H-Bridge 14 set pins function.

  • hbridge14_sleep_state - H-Bridge 14 control sleep function.

  • hbridge14_drive_motor - H-Bridge 14 drive motor function.

Open Source

Code example

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.

/*!
 * @file main.c
 * @brief H-Bridge 14 Click example
 *
 * # Description
 * This example demonstrates the use of the H-Bridge 14 board by driving the 
 * motor in both directions with braking and coasting in between.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes the driver and performs the click default configuration.
 *
 * ## Application Task
 * Drives the motor in both directions with coasting and braking in between, every sate is lasting 5 seconds.
 *
 * @author Stefan Ilic
 *
 */

#include "board.h"
#include "log.h"
#include "hbridge14.h"

static hbridge14_t hbridge14;
static log_t logger;

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridge14_cfg_t hbridge14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridge14_cfg_setup( &hbridge14_cfg );
    HBRIDGE14_MAP_MIKROBUS( hbridge14_cfg, MIKROBUS_1 );
    err_t init_flag = hbridge14_init( &hbridge14, &hbridge14_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( HBRIDGE14_ERROR == hbridge14_default_cfg ( &hbridge14 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

void application_task ( void )
{
    uint8_t fault_status = 0;

    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_CW );
    log_printf( &logger, " Driving motor Clockwise \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms( 5000 );
    
    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_BRAKE );
    log_printf( &logger, " Brake is on \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms( 5000 );
    
    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_CCW );
    log_printf( &logger, " Driving motor counter-clockwise \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms( 5000 );
    
    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_COASTING );
    log_printf( &logger, " Driving motor Coasting \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms( 5000 );
}

int main ( void ) 
{
    application_init( );
    
    for ( ; ; ) 
    {
        application_task( );
    }

    return 0;
}

// ------------------------------------------------------------------------ END

Additional Support

Resources

Love this project?

'Buy This Kit' button takes you directly to the shopping cart where you can easily add or remove products.