Intermediate
30 min

Step into the future of BDC control with DRV8701 and PIC18LF27K40

Smooth control, maximum potential

DC MOTOR 5 Click with EasyPIC v8

Published 11月 01, 2023

Click board™

DC MOTOR 5 Click

Dev Board

EasyPIC v8

Compiler

NECTO Studio

MCU

PIC18LF27K40

Elevate your engineering prowess with tailor-made motor control through our cutting-edge "H-Bridge" drive solution. Take the first step towards unmatched performance and efficiency by incorporating this customizable innovation into your project today.

A

A

Hardware Overview

How does it work?

DC Motor 5 Click is based on the DRV8701 brushed DC motor gate driver from Texas Instruments. The Click is designed to run on an external power supply. It communicates with the target MCU over the following pins on the mikroBUS™ line: AN, RST, CS, PWM, and INT. The DRV8701 is an

H-bridge gate driver (a pre-driver or controller). The device integrates FET gate drivers to control four external NMOS FETs. The device can be powered with a supply voltage between 5.9V and 45V. Internal protection functions are provided: under-voltage lockout, charge pump faults,

overcurrent shutdown, short-circuit protection, pre-driver faults, and overtemperature. The motor's velocity and direction can be adjusted with two PWM input signals.

DC MOTOR 5 Click hardware overview image

Features overview

Development board

EasyPIC v8 is a development board specially designed for the needs of rapid development of embedded applications. It supports many high pin count 8-bit PIC microcontrollers from Microchip, regardless of their number of pins, and a broad set of unique functions, such as the first-ever embedded debugger/programmer. The development board is well organized and designed so that the end-user has all the necessary elements, such as switches, buttons, indicators, connectors, and others, in one place. Thanks to innovative manufacturing technology, EasyPIC v8 provides a fluid and immersive working experience, allowing access anywhere and under any

circumstances at any time. Each part of the EasyPIC v8 development board contains the components necessary for the most efficient operation of the same board. In addition to the advanced integrated CODEGRIP programmer/debugger module, which offers many valuable programming/debugging options and seamless integration with the Mikroe software environment, the board also includes a clean and regulated power supply module for the development board. It can use a wide range of external power sources, including a battery, an external 12V power supply, and a power source via the USB Type-C (USB-C) connector.

Communication options such as USB-UART, USB DEVICE, and CAN are also included, including the well-established mikroBUS™ standard, two display options (graphical and character-based LCD), and several different DIP sockets. These sockets cover a wide range of 8-bit PIC MCUs, from the smallest PIC MCU devices with only eight up to forty pins. EasyPIC v8 is an integral part of the Mikroe ecosystem for rapid development. Natively supported by Mikroe software tools, it covers many aspects of prototyping and development thanks to a considerable number of different Click boards™ (over a thousand boards), the number of which is growing every day.

EasyPIC v8 horizontal image

Microcontroller Overview

MCU Card / MCU

default

Architecture

PIC

MCU Memory (KB)

128

Silicon Vendor

Microchip

Pin count

28

RAM (Bytes)

3728

You complete me!

Accessories

DC Gear Motor - 430RPM (3-6V) represents an all-in-one combination of a motor and gearbox, where the addition of gear leads to a reduction of motor speed while increasing the torque output. This gear motor has a spur gearbox, making it a highly reliable solution for applications with lower torque and speed requirements. The most critical parameters for gear motors are speed, torque, and efficiency, which are, in this case, 520RPM with no load and 430RPM at maximum efficiency, alongside a current of 60mA and a torque of 50g.cm. Rated for a 3-6V operational voltage range and clockwise/counterclockwise rotation direction, this motor represents an excellent solution for many functions initially performed by brushed DC motors in robotics, medical equipment, electric door locks, and much more.

DC MOTOR 5 Click accessories image

Used MCU Pins

mikroBUS™ mapper

Sense Comparator
RA3
AN
Sleep Mode
RA0
RST
Fault Indicator
RA5
CS
NC
NC
SCK
NC
NC
MISO
NC
NC
MOSI
NC
NC
3.3V
Ground
GND
GND
Control signal 1
RC1
PWM
Control signal 2
RB1
INT
NC
NC
TX
NC
NC
RX
NC
NC
SCL
NC
NC
SDA
NC
NC
5V
Ground
GND
GND
2

Take a closer look

Schematic

DC MOTOR 5 Click Schematic schematic

Step by step

Project assembly

EasyPIC v8 front image hardware assembly

Start by selecting your development board and Click board™. Begin with the EasyPIC v8 as your development board.

EasyPIC v8 front image hardware assembly
LTE IoT 5 Click front image hardware assembly
MCU DIP 28 hardware assembly
LTE IoT 5 Click complete accessories setup image hardware assembly
EasyPIC v8 28pin-DIP Access - upright/background hardware assembly
Necto image step 2 hardware assembly
Necto image step 3 hardware assembly
Necto image step 4 hardware assembly
NECTO Compiler Selection Step Image hardware assembly
NECTO Output Selection Step Image hardware assembly
Necto image step 6 hardware assembly
Necto DIP image step 7 hardware assembly
Necto image step 8 hardware assembly
Necto image step 9 hardware assembly
Necto image step 10 hardware assembly
Necto PreFlash Image hardware assembly

Track your results in real time

Application Output

After pressing the "FLASH" button on the left-side panel, it is necessary to open the UART terminal to display the achieved results. By clicking on the Tools icon in the right-hand panel, multiple different functions are displayed, among which is the UART Terminal. Click on the offered "UART Terminal" icon.

UART Application Output Step 1

Once the UART terminal is opened, the window takes on a new form. At the top of the tab are two buttons, one for adjusting the parameters of the UART terminal and the other for connecting the UART terminal. The tab's lower part is reserved for displaying the achieved results. Before connecting, the terminal has a Disconnected status, indicating that the terminal is not yet active. Before connecting, it is necessary to check the set parameters of the UART terminal. Click on the "OPTIONS" button.

UART Application Output Step 2

In the newly opened UART Terminal Options field, we check if the terminal settings are correct, such as the set port and the Baud rate of UART communication. If the data is not displayed properly, it is possible that the Baud rate value is not set correctly and needs to be adjusted to 115200. If all the parameters are set correctly, click on "CONFIGURE".

UART Application Output Step 3

The next step is to click on the "CONNECT" button, after which the terminal status changes from Disconnected to Connected in green, and the data is displayed in the Received data field.

UART Application Output Step 4

Software Support

Library Description

This library contains API for DC Motor 5 Click driver.

Key functions:

  • dcmotor5_short_brake - Function brakes the engine by setting IN1 ( PWM ) and IN2 ( INT ) pins on DC Motor 5 Click

  • dcmotor5_stop - Function stops the engine by clearing IN1 ( PWM ) and IN2 ( INT ) pins on DC Motor 5 Click

  • dcmotor5_enable - Function disables the engine by clearing SLEEP ( RST ) pin on DC Motor 5 Click

Open Source

Code example

This example can be found in NECTO Studio. Feel free to download the code, or you can copy the code below.

/*!
 * @file main.c
 * @brief DCMotor5 Click example
 *
 * # Description
 * This library contains API for the DC Motor 5 Click driver.
 * This application enables usage of brushed DC motor 5 gate driver.
 *
 * The demo application is composed of two sections :
 *
 * ## Application Init
 * Initializes GPIO, PWM and logger and enables the click board.
 *
 * ## Application Task
 * This is a example which demonstrates the use of DC Motor 5 Click board.
 * DC Motor 5 Click controls DC Motor speed via PWM interface.
 * It shows moving in the both directions from slow to fast speed
 * and from fast to slow speed.
 * Results are being sent to the Usart Terminal where you can track their changes.
 *
 * @author Nikola Peric
 *
 */

#include "board.h"
#include "log.h"
#include "dcmotor5.h"

// ------------------------------------------------------------------ VARIABLES

static dcmotor5_t dcmotor5;
static log_t logger;
uint8_t dcmotor_direction = 1;

// ------------------------------------------------------ APPLICATION FUNCTIONS

void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor5_cfg_setup( &cfg );
    DCMOTOR5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor5_init( &dcmotor5, &cfg );
    
    log_printf( &logger, " Initialization  PWM \r\n" );

    dcmotor5_pwm_start( &dcmotor5 );
    dcmotor5_enable ( &dcmotor5 );
    Delay_ms( 500 );
    log_printf( &logger, "---------------------\r\n" );
    log_info( &logger, "---- Application Task ----" );
}


void application_task ( )
{    
    static float duty;
    static uint8_t n_cnt;
    
    
    dcmotor5_clockwise ( &dcmotor5 );
    log_printf( &logger, "\r\n> CLOCKWISE <\r\n" );
    dcmotor5_enable ( &dcmotor5 );
    
    for ( n_cnt = 10; n_cnt > 0; n_cnt--  )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        log_printf( &logger, " >" );
        dcmotor5_set_duty_cycle( &dcmotor5, duty );
        Delay_ms( 500 );
    }
    for ( n_cnt = 1; n_cnt <= 10; n_cnt++ )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        log_printf( &logger, " <" );
        dcmotor5_set_duty_cycle( &dcmotor5,  duty );
        Delay_ms( 500 );
    }
    
    log_printf( &logger, "\r\n * Pull break *\r\n" );
    dcmotor5_short_brake( &dcmotor5 );
    Delay_ms( 1000 );
    
    dcmotor5_counter_clockwise ( &dcmotor5 );
    log_printf( &logger, "\r\n> COUNTER CLOCKWISE <\r\n" );
        
    for ( n_cnt = 1; n_cnt <= 10; n_cnt++  )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        dcmotor5_set_duty_cycle( &dcmotor5, duty );
        log_printf( &logger, " >" );
        Delay_ms( 500 );
    }
    for ( n_cnt = 10; n_cnt > 0; n_cnt-- )
    {
        duty = ( float ) n_cnt ;
        duty /= 10;
        dcmotor5_set_duty_cycle( &dcmotor5,  duty );
        log_printf( &logger, " <" );
        Delay_ms( 500 );
    }
        
}

void main ( void )  
{
    application_init( );

    for ( ; ; ) 
    {
        application_task( );
    }
}

// ------------------------------------------------------------------------ END

Additional Support

Resources